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Abstract
“Mental pictures” and “visual intuition” capture how people make sense of ab-

stract concepts and see solutions to hard problems in a visual way. Learning research
suggests that visual representations of knowledge are powerful tools for thought. Vi-
sual representations like diagrams enable more robust learning and flexible problem
solving.

Existing diagramming tools often require hours of low-level tweaking of geo-
metric primitives and do not capture the core task of diagramming: representing
ideas visually. PENROSE is a diagramming platform that explicitly encodes visual
representations in domain-specific languages. In this thesis proposal, I argue that
this explicit encoding can be leveraged to (1) reduce the programming effort of pro-
ducing diagrammatic problems at scale and (2) simplify the workflow of authoring
interactive diagrams. The resulting diagrams also carry rich semantics, and I’ll dis-
cuss how to use them to (3) provide useful, automated feedback to students.
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Prelude
Trigonometric identities are often presented as a big list of rules.

Students are often asked to solve problems by applying a subset of those rules, e.g., sin(0−θ) =
−sin(θ).

A useful visual representation of this concept is the unit circle: on a
Cartesian plane with a circle of radius 1 centered at the origin, concrete
values of trig functions are represented visually and rules are implicitly
encoded as geometric transformations. For instance, the value of sin(θ)
is the y-coordinate of a point on the circle, where the ray from the origin
to the point forms angle θ with the x-axis.

To derive the identity rule visually, one only needs to note that −θ is a reflection about the x-
axis, and observe that the y-coordinate is now a negative number. Instead of having to memorize
a big set of rules, one can reduce this problem to a simple operation on the visual representation
of a unit circle.

By translating the symbols to a visual representation, a unit circle, a student completely
bypasses the tedious memorization of trig identities. While this is a much more retainable and
robust representation for students, are we teaching representations like this to students? What
does it take for students to internalize it?
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Chapter 1

Introduction

“Mental pictures” and “visual intuition” capture how people make sense of abstract concepts
and see solutions to hard problems in a visual way. Hadamard described numerous examples of
mathematicians doing exactly this in The Mathematician’s Mind [23], later summarized by Alan
Kay [28]:

Jacques Hadamard, the famous French mathematician, in the late stages of his life,
decided to poll his 99 buddies, who made up together the 100 great mathematicians
and physicists on the earth, and he asked them, “How do you do your thing?” They
were all personal friends of his, so they wrote back depositions. Only a few, out of
the hundred, claimed to use mathematical symbology at all. Quite a surprise. All of
them said they did it mostly in imagery or figurative terms.

Learning research suggests that visual representations of knowledge are powerful tools for
thought. Visual representations like diagrams enable more robust learning [39] and abstract and
flexible problem solving [31, 32, 35]. Importantly, when people work with visuals, they build
better conceptual understanding and more flexible mental models that go beyond memorized
procedures [47].

Symbol-symbol (SS) 
Transformation

Visual-visual (VV) 
Transformation

Symbol-visual (SV) 
Translation

Visual-symbol (VS) 
Translation

Let me use a diagram to capture this: the
grounding rectangle represents two pathways to
learning and problem solving: One can perform
symbol-to-symbol transformations (SS, or “sym-
bol pushing”) or through an alternative diagram-
matic pathway: a symbol-to-diagram translation
(SV), a diagram-to-diagram transformation (VV),
and finally a diagram-to-symbol translation (VS).

Research on expertise development suggests a
need for substantial exposure involving repetition
in varied contexts or deliberate practice [18] to ac-
quire the perceptual chunks [19, 29] that support accurate interpretation and use of visual rep-
resentations [31]. Through enough practice, learning the two paths in the grounding rectangle
can produce better, more robust memory [13], learning [5, 39, 47], and future reasoning, both in
providing flexibility and in supporting error recovery [33].
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In reality, there seems to be an over-abundance of symbolic practice, continuing Kay’s train
of thought:

The sad part of the diagram is that every child in the United States is taught math and
physics through this [symbolic] channel. The channel that almost no adult creative
mathematician or physicist uses to do it... They use this channel to communicate,
but not to do their thing.

Diagrammatic practice is rare due to the significant cost of authoring diagrammatic problems.
Existing diagramming tools often require hours of low-level tweaking of geometric primitives
and do not capture the core task of diagramming: representing ideas visually. In other words,
these tools lack representational salience. As a result, the diagrams created by existing tools
don’t have semantics, as they are merely a collection of pixels and geometric blobs.

In prior work, colleagues and I built PENROSE, a diagramming platform that explicitly en-
codes visual representations in domain-specific languages (DSLs) [58]. In this thesis proposal, I
argue that this explicit encoding can be leveraged to (1) reduce the programming effort of pro-
ducing diagrammatic problems at scale and (2) simplify the workflow of authoring interactive
diagrams. The resulting diagrams also carry rich semantics, and I propose to use them to (3)
provide useful, automated feedback to students. My thesis statement summarizes the above:

Encoding visual representations in diagramming tools simplifies programming of in-
teractive visual activities that provide students with automated feedback at scale.

The expected contributions of this work are:

1. Need-finding studies on challenges authors face.

2. A platform of tools based on the visual encoding of PENROSE for mass-production of
diagrams (Chapter 3) and rapid authoring of interactive diagrams (Chapter 4).

3. A theoretical framework of the grounding rectangle, which guides the design of tools pre-
sented in this proposal.

Note. This proposal contains a mix of completed, in-progress, and proposed projects. In the
rest of this document, proposed work will be marked in orange on the left margin.
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Chapter 2

Understanding the diagramming process
and encoding visual representations

Before diving into the educational context, it’s important to understand why creating diagrams is
hard in the first place. This chapter discusses an interview study on how domain experts including
educators use diagramming tools [37], and briefly shows how this study informs the design of
PENROSE, the technical basis for tools presented in this proposal.

2.1 How domain experts create diagrams and implications for
tool design

Existing diagramming tools stand in tension between: a) General-purpose drawing tools such
as Illustrator and Figma that offer simple pen-and-canvas or box-and-arrow metaphors, but are
viscous [20]—users must constantly commit to exact positions, sizes, and styling of shapes. b)
Dedicated diagramming tools such as Lucidchart and Gliffy that allow rapid changes, but rely
heavily on templates, limiting diagrammers to a fixed set of visual representations. This relatively
limited support for diagramming in tools is in part because the process of diagramming is poorly
understood. For instance, how do diagrammers utilize the strengths and cope with the limitations
of their tools? Which tools are chosen for what purposes? Such a detailed understanding of the
process can help design interactive tools to support diagramming.

I conducted interviews with 18 domain experts from a wide variety of disciplines such as
math, computer science, architecture, and education. The interviews reveal that diagrammers
have diverse interactions with visual representations in both physical sketches and digital tools,
including finding, creating, storing, and reusing representations.

One implication of our results is the opportunity to design tools informed by the processes of
diagramming, and practices that domain experts already use, making digital diagramming more
intuitive and efficient. Here are four key opportunities for natural [43] diagramming tools that
allow diagrammers to express their ideas visually the same way they think about them:

• Exploration support: supporting exploratory behaviors such as undo and backtracking
during both abstract-level, breath-first exploration of the design space and low-level re-
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finements of visual details.
• Representation salience: allowing explicit creation and management of visual representa-

tions, i.e., the mappings from domain constructs to shapes instead of geometric primitives
themselves.

• Live engagement: providing diagrammers with the sense of agency by designing for live-
ness and directness of the diagramming experience.

• Vocabulary correspondence: enabling diagrammers to interact with their diagrams using
vocabularies that is conventional in their domain.

2.2 The design of PENROSE

Informed by the results from the interview study, colleagues and I have developed PENROSE, a
language-based diagramming platform [58]. The core PENROSE system addresses representa-
tion salience and vocabulary correspondence: it has first-class support for creating and reusing
visual representations and translates familiar math-like notation into one or more possible visual
representations. To accomplish this, PENROSE decomposes the concerns of diagramming into
two domain-specific languages (DSLs) with distinct purposes: SUBSTANCE contains the math-
ematical content in math notation. STYLE explicitly specifies mappings from mathematical
objects to visual icons.

Set A, B

A ⊂  B


Set X { shape = Circle { } }

A ⊂  B {

  ensure contains(X.shape, Y.shape)

}


type Set

predicate IsSubset : Set s1 * Set s2

notation "A ⊂  B" ~ "IsSubset(A, B)"


Set A, B

B ⊂  A


Set X { X.shape = Circle { } }

Set X, Y where X   Y {

  ensure contains(Y.shape, X.shape)

}


type Set

predicate IsSubset(Set s1, Set s2)

notation "B ⊂  A" ~ "IsSubset(B, A)"


Instead of a limited focus on one specific
domain (as in GraphViz [17] for graph the-
ory or GroupExplorer 1 for group theory), PEN-
ROSE is extensible to user-defined domains of di-
agramming. Both SUBSTANCE and STYLE are
parametrized by a DOMAIN schema that defines
all possible objects (e.g., Set ) and relations (e.g.,
IsSubset ) in a particular domain, which can be

used by associated SUBSTANCE and STYLE pro-
grams. In addition to user-extensibility, a formally
encoded domain also enables automatic generation
of PENROSE diagrams.

PENROSE compiles a trio of DOMAIN, SUB-
STANCE, and STYLE into a constrained optimiza-
tion problem defined by a set of graphical con-
straints (e.g., arrows that represent vectors should
start from the origin). The optimization problem is in standard form, i.e., minimization of an ob-
jective function subject to equality and inequality constraints [9]. Such problems may be solved
with many standard methods. PENROSE currently uses an exterior point method [27] that starts
with an infeasible point and pushes it toward a feasible configuration via progressively stiffer
penalty functions—mirroring a process often used by hand.

1https://github.com/nathancarter/group-explorer
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The design of PENROSE is driven by the design goals of reuse and scalability, and therefore
is suitable for large-scale generation of visual content. The system is scalable and reusable in
several dimensions:

• The optimization problem produced by
PENROSE often has multiple solutions, and
each point in the solution space corresponds to
an alternative diagram. No program changes
are required to generate these alternatives.
• For a visual representation encoded by a
STYLE program, a wide range of notations
(i.e., SUBSTANCE programs) can be visualized
without any changes to STYLE. In the figure
on the left, a single discrete STYLE program is
used to visualize three SUBSTANCE programs
that describe injective, surjective, and bijective
functions.
• Conversely, multiple STYLE programs can
be applied to the same SUBSTANCE program,
generating alternative visual representations
of the same underlying entities. The SUB-
STANCE programs in the figure are also visu-
alized by an alternative continuous STYLE.

-- injection.sub

Set A, B

f: A -> B

Injection(f)

Not(Surjection(f))

-- surjection.sub

Set A, B

f: A -> B

Surjection(f)

Not(Injection(f))

-- bijection.sub

Set A, B

f: A -> B

Surjection(f)

Injection(f)


With the extensible design, PENROSE can automatically generate diagrams from many dif-
ferent domains using familiar syntax. PENROSE-generated geometry, real analysis, ray-tracing,
set theory, and algebra are shown below.
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Chapter 3

EDGEWORTH: diagrammatic problem
authoring at scale
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In which of the following diagrams are 
∆CED and ∆AED congruent?

Correct!

Figure 3.1: left: a translation problem that helps students discern the structure of linear equations (adapted
from [30]). right: an EDGEWORTH generated problem that trains student to recognize diagram configurations [31]
for triangle congruence.

Effective use of visual representations requires a certain level of representational fluency
that’s achievable through deliberate practice and repetition [16, 44]. Recognizing how words,
symbols, and diagrams relate to each other is an important first step of achieving fluency. Prior
work has shown that these contrasting cases, i.e., discrimination and mapping, among represen-
tations significantly improve students’ ability to translate among representations [30].

To train students’ representational fluency, educators often create problem sets that involve
numerous contrasting cases of a particular visual representation. For instance, Figure 3.1 shows
two examples of translation problems, where the problem asks students to determine diagram-
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matic instances and noninstances of a textual description and vice versa. Importantly, these
instances and noninstances have varying degrees of differences from the given diagram or text,
and carefully picking examples on this spectrum has a big impact on learning [38].

Unfortunately, authoring diagrammatic problems remains a tedious, manual process. Our
formative interviews show that educators have difficulties creating simple shapes using existing
tools. Limited by the tools, educators don’t have support to create enough problems and resort to
copy-pasting and manual editing. They expressed desires for tools that understand the diagrams
and allow them to make semantically-consistent tweaks to diagrams.

In this chapter, I discuss EDGEWORTH, a tool that supports an automated and scalable dia-
grammatic problem authoring workflow.

3.1 Formative interviews
To inform the design of EDGEWORTH, I conducted semi-structured interviews of teachers, text-
book authors, and learning engineers that have experience creating instructional material, author-
ing problems, or developing e-learning tools that include mathematical diagrams. The interview
questions ask about what roles visuals play in the educational material, how they are connected
to surrounding content, and how students interact with visual content. This formative study aims
to understand the gaps between affordances of current tools and ideal workflows of content cre-
ators, and the need for automation and mass production of visual content. Participants are asked
to share content they have created and discuss the creation process in detail.

3.1.1 Need for diagrammatic contents
Traditional educational materials, especially in higher education, tend to emphasize “procedures,
memorization, and symbolic manipulation” (P6). As a result, students often become “symboli-
cally good” and do not develop “good conceptual understanding” (P3). Visual content like di-
agrams and graphs provide alternative representations that help students “develop intuition and
become better problem solvers” (P3). As a result, most of our participants include visuals in their
instructional materials such as problem sets and lecture notes. Some also ask students to draw,
annotate, and explain diagrams (P1, 2, 6).

3.1.2 Visual content in instruction
P2 would deliberately encourage students to learn “multiple representations” and made diagrams
central to their math and programming curricula. For instance, a typical problem set in a pre-
calculus class will have either problems with diagrams, or students have to “produce a drawing if
no pictures are given.” To improve students’ “visual fluency,” P1 incorporates visualization tools
such as GeoGebra in their middle school math classroom. Students draw in in-class activities
and homework assignments. P1 found that students “benefit from using a diagram,” but also
refer to the “curse of knowledge” when teaching students how to use diagrams: students need
deliberate practice to use visuals successfully, but existing instruction tends to under-train them.
When students practice with visuals, instructors like P6 also gain richer feedback of students’
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level of understanding: “when the students drew diagrams to figure out the answer. I actually
learned more from this than 10 similar problems without the picture.”

3.1.3 Need for better tools

Many aspects of content authoring can be repetitive and iterative. Authors typically create “mul-
tiple similar examples” (P1) and “variants of classroom examples in problem sets” (P6). In
addition, they iterate on their content often, even “re-do my courses every semester” (P2) in
some cases. Participants face a trade-off when authoring visual content: visuals are much harder
and time-consuming to create, especially when variations and frequent changes are required in
instructional materials, which is often the case. When authoring practice problems, P1 struggles
to “create simple shapes by myself ” and always ends up “copy-pasting and searching online”
repeatedly. As a result, P1 tends to “reuse [a few of my existing diagrams. Thinking about hav-
ing to do it all over again for another class is just too much.” To make visual content authoring
time efficient, P2 and P5 developed a custom pipeline for authoring problem sets and quizzes
using programming tools. Similar to problems described in [37], these tools often lack support
for “high-level tweaking of my diagrams” (P2) and “are a pain to use because the language is
not semantic and hard to use for non-programmers.” (P5)

3.2 Mutation-based diagram generation

Educators simply don’t have enough time to produce good-looking diagrams, not to mention the
amount and variety of diagrams required for training students to be fluent in visual representa-
tions. Therefore, a key pain point to automate is diagram generation. Importantly, the generated
diagrams have to be meaningful and need to include contrasting cases of the same subject matter.

In EDGEWORTH, I propose to generate a large pool of diagrams by mutating the SUB-
STANCE program in a PENROSE trio. Compared with general-purpose programming lan-
guages, PENROSE DSLs have unique advantages: DOMAIN is a meta-language that precisely
defines the available program constructs in SUBSTANCE, which helps define the mutation search
space. Moreover, it’s easier to make sense of mutation on SUBSTANCE, because it corresponds
to the domain-specific vocabulary of diagram authors.

At a high level, the EDGEWORTH mutator takes in a PENROSE trio and a small configuration
file, and simply generates an arbitrary number of SUBSTANCE programs. Constrained by the
configuration, EDGEWORTH mutates the SUBSTANCE program (prompt program) by applying a
series of program mutations to get a mutant SUBSTANCE program. For each mutant, the system
then uses the original STYLE and DOMAIN programs to render a diagram.

Since SUBSTANCE is a small declarative language, EDGEWORTH uses a set of pre-defined,
high-level mutation operations listed below.

• Add Appends a statement to the SUBSTANCE program.
• Delete Removes a random statement from the SUBSTANCE program.
• Cascading Delete Removes a random statement and all other references to that statement.
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Incorrect - randomCorrect - general position

Incorrect - distractor Correct - special cases

Point A, B, C, D, E

Triangle CED, DEA, CEA, BEA

Collinear(D, E, B)

Collinear(C, E, A)

RightMarked(a_CEB)

EqualLengthMarked(CE, EA)

Point A, B, C, D, E

Triangle CED, DEA, CEA, BED

Collinear(D, E, B)


RightMarked(a_CEB)

EqualLengthMarked(CE, EA)


Collinear(C, E, A)


Acute(a_AEB)

Point A, B, C, D, E

Triangle CED, DEA, CEA, BED


RightMarked(a_CEB)


Collinear(D, E, B)


EqualLengthMarked(CE, EA)

Collinear(C, E, A)


Point A, B, C, D, E

Triangle CED, DEA, CEA, BED

Collinear(D, E, B)

Collinear(C, E, A)

RightMarked(a_CEB)

EqualLengthMarked(AD, DC)

Figure 3.2: Four example classes of mutants generated by EDGEWORTH. Top-left: the original prompt program,
representing a general correct instance. Bottom-Left: an incorrect noninstance that only slightly differs from
the original prompt semantically. Top-right: an incorrect noninstance that differs significantly from the prompt.
Bottom-right: a correct instance that’s a corner-case of the prompt.

• Swap Arguments Reorders the arguments passed into a statement. e.g., if A and B are
Triangles :
Similar(A, B) → Similar(B, A)

• Swap-In Arguments Replaces the arguments passed into a statement with other arguments
defined in scope. e.g., if A, B, C, D are Points :
s := MkSegment(A, B) → s := MkSegment(C, D)

• Replace Statement Name Replaces a statement with a different statement that takes the
same type of arguments and has the same return type. e.g., given that T is a Triangle :
Right(T) → Obtuse(T)

• Type Change Replaces a statement with a new one that takes the same number and type
of arguments, but does not necessarily return a value of the same type. e.g., if E is an
Angle :
Segment s := Bisector(E) → Right(E)

These mutations are all done safely at the level of the abstract syntax tree (AST) and EDGE-
WORTH maintains a local context and symbol table, so operations will not introduce errors. The
configuration file contains a set of rules to filter down the search space by statement types and
specify the kinds of mutations allowed.

Authoring contrasting cases require different classes of diagrams: those that correctly corre-
spond to the textual/symbolic description and others that don’t. Importantly, nearest neighbors
of the prompt program seem to have great education values, i.e., “near misses” and “near hits.”
Knowing the correctness of a mutant also helps with automated grading of problems.

Although EDGEWORTH generates syntactically valid mutants, the system doesn’t know whether
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a mutant is semantically consistent with the prompt a priori. Currently, the system uses the
graphical constraints to determine semantic consistency. Specifically, it uses an energy-based
heuristic by performing cross-instance energy evaluation (CIEE) of each mutant. Suppose
EDGEWORTH mutates the prompt program P to mutant P ′ and generates a diagram D′ from P ′.
the system can compute the cross-instance energy of D′ by 1) checking if all of the constraints
generated from P are met by D′ and 2) run the objective function defined by P on D′ and check if
the D′ is at a local minimum. In other words, the PENROSE optimizer determines if the diagram
D′ generated from mutated program P ′ is a good fit for the prompt program.

contains

contains

Energy: 0

contains

contains

Energy: 0

contains

contains

Energy: 6800602

contains

contains

Energy: 6800602

contains

contains

Energy: 78480519

contains

contains

Figure 3.3: An example of CIEE, where the leftmost is the prompt program P and its corresponding diagram
D. The overall energy value is 0. The right three are instances of P ′, on which the constraints from the prompt
are evaluated. The middle two are semantically inconsistent with the prompt and have high energy values. The
rightmost is semantically consistent with the prompt and therefore has an energy value of 0.

CIEE robustness. CIEE showed some promise on a limited set of examples, but further
evaluation is needed to see the robustness of this heuristic. For instance, how much does this
method depend on the qualities of the STYLE program that defined the constraints? If the mutant
significantly differs from the prompt (e.g., missing most identifiers from the prompt), is this
heuristic still useful?

DOMAIN language extensions. None of the predefined mutations listed above carry any
mathematical semantics because DOMAIN doesn’t contain enough information. For instance,
many mathematical predicates have reflexive, symmetric, transitive, and substitution properties,
but DOMAIN only encodes basic type definitions. For a more precise notion of correctness, I
plan to extend DOMAIN to model such properties, and use them in the EDGEWORTH mutator,
possibly together with CIEE, to generate higher quality mutants.

3.3 Preliminary evaluation of the EDGEWORTH mutator

In preliminary work, we evaluated the system by recreating problems in a middle-school geom-
etry textbook [10]. We examined all 53 diagrammatic problems in the chapter review sections
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and picked a representative subset of 24 problems and implemented them in EDGEWORTH. For
each textbook problem, the prompt is reframed so that the diagram accompanying the original
problem can be considered a correct answer. Then, we consider possible answers to the posed
question, including “distractors”—answers that are designed to tempt students with limited con-
ceptual understanding—as well as correct “special cases”. We then describe the original diagram
as a prompt SUBSTANCE program and pass it to EDGEWORTH, which generates numerous an-
swers to the original problem.

We examined sets of 20 diagrams generated by EDGEWORTH based on various prompt pro-
grams. Each program was mutated 1-3 times and the correctness of each diagram was determined
manually. We found that while EDGEWORTH easily generates a variety of correct and incorrect
diagrams, careful selection of configuration parameters was often required to get more “interest-
ing” diagrams (correct special cases, distractors).

Usability of the EDGEWORTH configuration. As noted above, results from the EDGE-
WORTH mutator are sensitive to the configuration. For instance, a statement in the SUBSTANCE

program might be particularly more suitable for mutations than others (perhaps because it con-
tributes to the correctness of the problem.) Under- or over-specifying mutations in the configu-
ration might lead to a pool of “noisy” diagrams. I propose to conduct a light-weight case study
with a handful of problems to identify the key to successful configurations. With that insight, we
can either improve the configuration format or explore other modes of interaction.

3.4 Mutation paths as problem templates
After generating a pool of diagrams, the author then picks a subset of them for a single problem
instance. For each generated diagram, EDGEWORTH keeps a record of the series of mutations
performed on the prompt program (mutation path) to the mutant. For a multiple choice problem
with four options, there will be four mutation paths from the prompt. Together these paths form
a problem template.

A problem template is specific to a prompt, so it’s unlikely to be reusable for generating
other problem instances. However, many problems might share the same instructional goal such
as teaching students the conditions for the Hypotenuse-Leg (HL) theorem. While the choice
of names and diagram design may differ, the core structure is the same: two instances of con-
gruent triangles satisfying HL and two noninstances of non-congruent triangles. Encoding this
information can further scale up problem authoring.

I propose to investigate common structures among problem templates and encode them
as problem template specifications that are generalizable to multiple prompts.

3.5 By-example workflow for authoring at scale
With the EDGEWORTH mutator, the primary mode of interaction is picking examples from the
mutant pool and editing the configuration to narrow down the search space. In some cases (see
Section 3.3), the author might want to write a few examples from scratch, or prefer to manually
make slight tweaks to examples in the mutant pool. I propose to create a programming-by-
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example workflow, where the author manually creates a few diagrams and EDGEWORTH
generates a bigger pool of diagrams with similar properties.

Add new diagram

Your examplesSet A, B, C

(B, A)

(C, A)


(B, C)

IsSubset
IsSubset
Equal

1

2

3

4


Edgeworth examples

Figure 3.4: User interface mock-up of a by-example workflow in EDGEWORTH.

For example, if EDGEWORTH fails to generate a pool of useful diagrams, the author can
manually create a few examples by directly editing the prompt program. In Figure 3.4, the author
adds the Equal(B, C) predicate. Their intent is to include the edge case of proper subsets in
this problem, where some of the subset relations are actually equality. EDGEWORTH generates a
set of similar examples that add Equal predicates with existing identifiers in different ways.

The addition of Equal(B, C) is effectively a user-generated mutation, and EDGEWORTH

needs to understand this mutation to generate similar instances. Currently, the EDGEWORTH

synthesizer matches a series of author edits to predefined mutations. Once the synthesizer finds a
path, it can then inform the mutator to generate examples with similar properties (i.e., including
the edge case of equal sets).

Generalized mutation paths Similar to templates, the by-example workflow also requires a
generalizable encoding of mutations. I plan to experiment with a few possible formats such as
(1) another mutator configuration and (2) mutation paths with “holes.”

3.6 Evaluation

Usability study of EDGEWORTH. I propose to evaluate the usability of EDGEWORTH by recruit-
ing authors to perform content authoring tasks with the EDGEWORTH prototype. For example,
the participants may be asked to author a problem set of 10 diagrammatic problems. The goal of
this study will be to identify missing features, usability problems, and opportunities for simpli-
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fication. The study may include several rounds with increasingly high-fidelity prototypes. After
each round, I will refine the design and implement the next prototype. Here are some possible
research questions:

• What are the key design considerations for diagrammatic problem authoring? How do they
fit with the features of EDGEWORTH?

• How do authors prefer to work with EDGEWORTH? When do they opt to write a configu-
ration file and generate many diagrams? When do they use the by-example workflow? Do
they mix the two workflows?

• How does the experience compare to their existing tools? How can EDGEWORTH incor-
porate useful parts of them?

3.7 Related work

3.7.1 Using contrasting cases to improve representational fluency

Representational fluency refers to the ability to quickly understand a visual representation and
to use it to solve domain-specific tasks [47]. To become representationally fluent, an important
first step is to identify meaningful aspects of a particular representation. Kellman et al. [30]
show that mapping between symbolic and visual representations leads to intuitions about the way
equivalent structures relate to each other. The learning that results from constructing connections
between symbols and diagrams can be more flexible. Students are better at transferring their
learning from the problems they have explicitly practiced to more open-ended problems and
their conceptual understanding is better [24].

In addition to mapping between representations, Marton [38] also showed that contrasting
cases help students discern crucial parts of a particular representation. Early on, students ben-
efit from discerning instances and noninstances that differ in only one dimension of variation.
As students become more fluent, a fusion of multiple varying dimensions in problems may be
necessary [12].

3.7.2 Multiplicity of examples and problem generation

In addition to training representational fluency, multiple examples and repeated, varied practice
are well-documented strategies for broader learning goals in the learning science literature. Many
studies have demonstrated substantial STEM learning benefits for multiple worked examples per
topic [46]. Equally important is research indicating the importance of active learning [11, 15]
and repeated practice [18, 54] that occurs within varied contexts [45, 49] and involves direct
explanatory feedback [30].

As a result, a number of authoring tools exist for large-scale production of examples and
practice problems. Intelligent Tutoring Systems (ITS) are automated curricula that often include
worked examples and practice problems that are customized to individual students. The Cogni-
tive Tutor Authoring Tools (CTAT) is an ITS authoring platform [3]. CTAT has a “Mass Produc-
tion” feature that lets the user create a problem template and insert problem-specific values via
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a spreadsheet [4]. The ASSISTment builder allows authors to “variablize” numerical values in
problem templates for automatic generation [48]. In the computer-aided education literature, a
number of systems were also proposed for problem generation [1, 21, 22] In both lines of work,
most systems don’t tackle the problem of diagram generation—they mostly generate symbolic
problems and examples. Notably, Gulwani et al. [22] generated ruler-and-compass geometry
constructions automatically, which is a significantly narrower domain than what EDGEWORTH

targets.
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Chapter 4

From encoding to semantics-preserving
interactivity

Diagrams live in the context of surrounding text, overlaid annotations, and human gestures. The
web opens up opportunities for even richer in-context interaction. In education, though students
spend more time on digital platforms, they often see diagrams that are presented exactly as be-
fore: blurry, static, and ornamental. In addition to their values as an external, static representation
of knowledge, diagrams are also beneficial when people learn with, instead of from them [55].
Prior work shows interacting with visual representations has unique benefits to learning [2, 6].
In contrast with a static diagram, a semantics-preserving interactive diagram allows students
to rapidly explore alternatives, understand the underlying rules of a visual representation,
and receive instant feedback on their actions. Meaningful interaction with diagrams helps
students move from passive recognition to active synthesis of visual representations [34].

Sadly, interactive diagrams are scarce in the wild. Most interactive documents require authors
to be proficient in general-purpose programming and have decent knowledge in handling low-
level events like mouse down/up, hover, etc. As a result, a simple interactive diagram often takes
up 100s of lines-of-code and can be hard to debug [36, 40]. Additionally, because interactive
diagrams change a lot, authors often need to reason about a collection of diagrams, making the
task even harder.

PENROSE and EDGEWORTH elevate the semantics of diagrams from low-level primitives
to mathematically meaningful notations. Specifically, PENROSE encodes both the translational
semantics of how notations are translated to diagrams, and the visual semantics of how shape
primitives relate to each other expressed as constraints. By exploiting both, we can automatically
support semantics-preserving interactive diagrams. In this section, I investigate how to build
interactive diagram activities that are automatically derived from PENROSE diagrams and easily
created without extensive programming efforts. In short, I propose to (1) simplify programming
interactive diagrams and (2) provide students with rich, automated feedback by leveraging
the encoding of visual representations.
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4.1 Motivating example
Consider the first diagram in a popular explorable explanation piece ”Eigenvectors and Eigen-
values Explained Visually 1.” The diagram is one of a series of interactive diagrams showing the
visual properties of eigenvalues and eigenvectors: it shows a visual interpretation of matrices as
linear transformations: matrix A with columns a1 and a2 transforms v to Av. In the diagram, a1,
a2 and v are all draggable.

Seeing what varies and what doesn’t is an important form of feedback that fosters conceptual
understanding. The reader gains an initial understanding of how columns of A impact Av’s value
through interacting with the diagram: dragging any of a1, a2 and v affects the position of Av.

In the original code repository 2, the authors wrote about a hundred lines of JavaScript with
D3.js to make the first diagram. Although D3.js and Angular already provide significant support,
it’s still a lot of work to handle mouse down/up/hover events, and to keep track of intermediate
values during dragging.

To reproduce this diagram in PENROSE, one can write a simple SUBSTANCE program in the
linear algebra domain [58, Section 5.4].

Vector a_1, a_2, v

Matrix A := columns(a_1, a_2)

Vector Av = multiply(A, v)

AutoLabel All


With the core system, the trio generates a static SVG diagram. Under the hood, every
Vector is represented visually as an arrow starting at the origin (a1, a2), or a single point

(v). They are all degrees of freedom (DOF) in the optimization problem. In other words, both
the x and y-components of the arrow-end of a1, a2, and the point representing v are free to move
on the canvas. Following the original design of the explorable, the system surfaces the DOFs
as draggable points. Whenever the user drags the end of one of the arrows, the optimizer takes
the new position as a part of the final solution, and solves the rest of the optimization problem.
Effectively, by using this simple and generalizable strategy, which I will discuss in the following

1https://setosa.io/ev/eigenvectors-and-eigenvalues/
2https://github.com/vicapow/explained-visually/tree/master/client/

explanations/eigenvectors-and-eigenvalues
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sections, the system can reproduce the interactive design using the PENROSE trio for a static
diagram without a single line of code added.

4.2 Semantics-preserving interactivity as feedback
Section 4.1 is an example of a set of interactive behaviors that can be automatically derived from
a PENROSE trio without any additional programming. Specifically, the example leverages how
PENROSE encodes visual semantics: PENROSE compiles a program trio to computational and
optimization graphs with degrees-of-freedom (DOF) [58, Section 4.1.2-3]. Degrees-of-freedom
determine a diagram instance in PENROSE. They are “free” variables within the computational
graph and non-constant root nodes in the optimization graph. DOFs are the key to generate
a family of diagrams: by manipulating DOFs, the optimizer solves for different diagrams that
satisfy the constraint set defined by the trio. In other words, DOFs are a concise representation for
interaction. In this section, I use dragging as a case study and show a few ways of manipulating
the DOFs in a semantics-preserving manner.

As a reasonable default, the system can find positional properties in the DOFs and make them
draggable. In Section 4.1, the relevant STYLE blocks define a simple computational graph for
the SUBSTANCE program, where a_1.data , a_2 .data , and v.data are DOFs. Figure 4.1
shows the graph for a_1 ’s properties. To accomplish the interactivity in the example, the system
can analyze the computational graph to find DOFs and their aliases, i.e., child nodes that are
assigned values of the DOFs. For instance, a_1.data is a DOF and a_1.icon.end references
a_1.data . In contrast, Av.end is not made draggable because it’s not a DOF nor an alias in

the computational graph: its value is computed by matmul(a_1.data, a_2.data) .

Vector v { 

  v.data  = (?, ?)

  v.icon = Arrow { 

    start : (0, 0) 

    end   : v.data

  }

  v.text = Text { string : v.label }  

  ensure near(v.text, v.icon)

}

Matrix A 

where A := columns(a_1, a_2) {

  A.data = [a_1.data; a_2.data] 

}

Vector Av = multiply(A, v) {

  override Av.data = matmul(A.data, v.data)

}



(0, 0)

(?, ?)

shape

start end

data

a_1

(?, ?)

data

a_1

data

Av

(?, ?)

data

a_2matmul

Figure 4.1: Left: relevant blocks in the linear algebra STYLE program for Section 4.1. Right: computational graphs
for a 1 and Av, where the data field for the former is optimized and that for the latter is computed.

Once exposed as draggable properties, the user can now change the values of positional
DOFs by dragging shapes around. However, since their interaction is situated in an optimization
problem, it’s important to discuss how an optimizer influences this interaction and manipulates
the rest of the diagram in a semantics-preserving way. In Section 4.1, dragging a_1.icon.end

and a_2.icon.end works as intended because they are independent from each other: they
don’t participate in the same constraints in the computational graph. However, this is not the
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right interaction for DOFs that participate in the same constraints, which is often the case. In this
section, I give two example optimization strategies for supporting semantics-preserving drag.

4.2.1 Follow the cursor

Figure 4.2: Dragging a subset, B, in a Venn diagram in an intuitive and semantics-preserving way, where B is
always under the cursor and B ⊂ A is always held true.

Consider the example in Figure 4.2, which shows a simple Venn diagram of sets A and
B where B ⊂ A. The underlying rule of this visual representation is that a subset is always
visually contained in the superset. An interactive diagram should clearly reveal this rule by
keeping this containment relationship true at all times. For instance, if a student drags B to the
right, the diagram should change such that A still contains B. Importantly, the interaction should
be natural, and also make the feedback very clear: as the student is dragging B, B must stay
under the cursor, and the rest of the diagram should incrementally move with B to maintain the
containment relationship.

Unfortunately, when using the current PENROSE optimizer, dragging either A or B yields
counterintuitive results: the optimizer changes arbitrary properties, including the manipulated
ones. This is because it optimizes all DOFs simultaneously. In Figure 4.3, it moves both A
and B to satisfy the containment constraint. This behavior adds noise to the feedback, and may
confuse the student.

Figure 4.3: Dragging a subset, B, in a Venn diagram in semantics-preserving but counterintuitive way, where
B ⊂ A held true but the shapes appear in random locations.
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To enable intuitive interactivity, the system can analyze the computational graph again to
derive the right behavior. We can achieve this behavior by “locking” the DOFs, treating them
as constants in the optimizer. Specifically, when a student manipulates DOFs or its aliases, the
system locks these DOFs and optimizes the rest as usual. When the student interacts with an
object (i.e., dragging to change x and y of a Circle ), the system yields the control to the
student completely and locks the manipulated properties during optimization. The visual effect
is that all other parts of the diagram “follow” the student interaction.

4.2.2 Freeze the world
Locking the manipulated property is not the only way to maintain the visual semantics. Instead
of limiting the optimizer, we could also limit the interaction so they see the effect of changing
one or multiple shape properties under constraints. When the student interacts with a shape, the
optimizer keeps all other properties locked and continuously uses the energy function to “guide”
the student. The techniques involved are different from Section 4.2.1. In this case, the student is
playing the role of the optimizer, i.e., changing DOFs, while the optimizer only sends feedback
to make sure the interaction is semantic. The visual effect is a constrained interaction where the
student can only make semantically-valid moves.

Figure 4.4: The behavior of dragging a point along the unit circle depends on the optimization strategy. Left: “Fol-
low the cursor” shifts the entire diagram to follow the point and doesn’t correspond to the mathematical semantics.
Right: “Freeze the world” should be the correct optimization strategy, where the point only moves along the circle,
and nothing else changes in the diagram.

For instance, Figure 4.4 shows a diagram of the unit circle. A natural interaction is to drag
the point along the unit circle to see how the values of trig functions change. In this case, the
red line shows the value of sin. If the optimizer naively follows the cursor, Figure 4.4 (right)
would be the result, where the rest of the diagram is translated to stay in a valid layout. Instead,
it’s much more desirable to “freeze the world” and constrain the student input within the feasible
region—–along the unit circle (Figure 4.4 left).

Together, these two strategies cover a wide range of drag behaviors that are traditionally
difficult and time-consuming to implement. Note that these two strategies are not necessarily
mutually exclusive. In fact, the system may have a set of default rules for or let the author
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specify the strategy on a per-DOF basis. For instance, an instructor might apply “freeze the
world” to show students the valid positions of a component in a diagram, while applying “follow
the cursor” to the rest of the components to show alternative layouts of the diagram.

Encoding optimization strategies. If the author wants to control the optimization strategy, they
will need an encoding to do so. Because STYLE already has language constructs for matching on
shapes, a STYLE language extension may be suitable for specifying static strategies per shape,
e.g., a shape should always follow the cursor when dragged. However, the current design of
STYLE may not be suitable for deciding strategies dynamically if needed, e.g., a shape follows
the cursor in a certain region of the diagram, and freezes the world on the boundary.

4.3 Highlighting and annotation as feedback
As demonstrated in Chapter 3, diagram understanding is a vital step towards representational
fluency. A significant part of diagram understanding maps to learning the translational semantics
of a diagram, i.e., which shape represents what math object. While EDGEWORTH helps students
practice the mapping between a particular visual representation and symbols, I propose to pro-
vide on-demand, inter-representational feedback by utilizing the translational semantics of
a PENROSE trio.

4.3.1 Inter-representational highlighting
Students’ exposure to visual representations is often limited by traditional media like textbooks
and in-person lectures. The mapping between symbolic and visual representations is often
scarcely presented via prose, gesture, and carefully designed worked examples. Web-based mate-
rials show a much more pervasive use of on-demand highlighting to build up inter-representational
connections. However, there’s also a non-trivial authoring burden to meticulously annotate the
HTML document and the diagram with CSS classes:

If an online textbook or website uses diagrams generated by PENROSE, the author may lever-
age the translational semantics to automatically provide on-demand highlights. For instance,
suppose an author writes an visual explanation in markdown with interleaving SUBSTANCE sym-
bols in the prose. The system can automatically generate diagrams by extracting the SUBSTANCE

symbols and provide highlights for all subsequent references to the same symbols. Since PEN-
ROSE can generate alternative diagrams in the same visual presentations, the highlighting can
also provide contrasting cases of a particular entity across diagram instances.
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# Set intersection



Given `Set A` and `Set B` 
, `IsSubset(B, A)`  
indicates that `B` is a 
subset of `A`


Set intersection



Given     and     , 

            indicates that 

    is a subset of    .

Building connections among multiple visual representations also improve learning [47]. Be-
cause a PENROSE trio is representationally salient, one can swap among alternative STYLE pro-
grams to get diagrams that visualize the same symbols. Because the SUBSTANCE program stays
the same, the same strategy also works for highlighting diagram parts across multiple visual
representations.

4.3.2 Documentation and program slices as tooltips

-- First column of `A` [a_1.data]


-- Second column of `A` [a_2.data]


-- Example vector in space [v.data]


-- Matrix with `a_1` and `a_2` as columns

   [A.data]


-- `v` transformed by `A`


Vector a_1 


Vector a_2


Vector v


Matrix A := columns(a_1, a_2)


Vector Av = multiply(A, v)

AutoLabel All


v transformed by A

v: Example vector in space

A: Matrix with  a1 and a2 as columns 

v transformed by A

v: Example vector in space

A: Matrix with  a1 and a2 as columns 

In technical documents, symbols and acronyms are often defined once and used everywhere
else. To help readers understand them, tools like ScholarPhi and Nota [25, 57] use tooltips to aid
readers. In real world publications, authors augment math equations for better readability, too.
Diagrams use even more symbolism and can be hard to understand. We propose a lightweight
markup language in the form of SUBSTANCE documentation for authoring simple diagram aug-

22



April 5, 2022
DRAFT

mentation. Similar to Idyll [14], the markup language has a markdown-like syntax, but allows
splices of SUBSTANCE variables and runtime values. In the frontend, we analyze the SUB-
STANCE values in each snippet, and trace all related snippets based on variable references. For
instance, the snippet about Av refers to both A and v, so they appear on the tooltip stack.

The translational semantics also involve how DOMAIN, SUBSTANCE, and STYLE programs
relate to each other. Therefore, STYLE and DOMAIN can also be valuable sources of feedback:
the STYLE program encodes the visual semantics, and the DOMAIN program captures the gram-
mar of notations. A slice of a PENROSE trio traces the origin of a graphical primitive to the
DOMAIN, SUBSTANCE, STYLE programs. For instance, without any authoring burden, the sys-
tem can display slices of the program trio based on object selection. Alternatively, the proposed
markup language may be extended to DOMAIN and STYLE, and the system can render inline
documentations in all three languages.

Scalar v = det(M)

function det ...

v.shape = Polygon { ... }

Note that the slice is a 
concrete instance with all 
the Substance values 
substituted in.

4.4 Evaluation
To evaluate the discussed interactive techniques, I plan to conduct comparative case studies be-
tween feature-full modern JavaScript libraries (e.g. D3.js) and PENROSE. Research questions
for this study include:

• Does the PENROSE-based system simply programming interactive diagrams?
• Are the interactive features comparable to the hand-written examples?
• How expressive is our grammar of interactivity?
• When does the approach break down?
In general, I expect that our system can cover common, important interactive features with

significantly less manual effort. In the studies, I plan to collect both quantitative (e.g., lines-
of-code, time taken) and qualitative data about authoring interactive diagrams using JS library
versus our system. Currently, the candidate pool of examples include:

• Worked examples and explorable explanations:

A Gentle Introduction to Graph Neural Networks: https://distill.pub/2021/
gnn-intro/
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Explained visually: https://setosa.io/ev/

Explorable explanations: https://explorabl.es/

Gallery of concept visualization: https://conceptviz.github.io/
• Online textbooks and curricula:

Seeing theory: https://seeing-theory.brown.edu/

Immersive math: http://immersivemath.com/ila/index.html

Mathigon: https://mathigon.org/

Physically-based rendering: https://pbr-book.org/

Brilliant: https://brilliant.org/

4.5 Related work

4.5.1 Grammars for interactivity
Pioneered by the grammar of graphics [56], researchers in data visualization developed a rich set
of tools based on an explicit encoding of the mapping from data to visual primitives [8, 51, 52].
Notably, Vega-Lite [52] is a grammar for interactive data visualization. One key to the Vega-
Lite grammar is “selection,” because the underlying data doesn’t change during interaction. In
diagramming, this assumption is not always true. The basic building blocks are mostly “manipu-
lation” of shapes in relation with the underlying representation. Satyanarayan et al. [53] give an
extensive review of data visualization authoring tools, including those that support interactivity.

In addition, the information/data visualization literature also contributed taxonomies and con-
ceptual frameworks of interactivity. For instance, Yi et al. [59] propose 7 general categories of
interactive techniques in information visualization: Select, Explore, Reconfigure, Encode, Ab-
stract/Elaborate, Filter, and Connect. Similarly, Heer and Shneiderman [26] describe a taxonomy
of interactive dynamics for visual analysis, which was presented as a list of verbs, too. These
frameworks and taxonomies are useful to build upon. Again, the high-level concepts involved
for interactive diagrams can change significantly from them because of the differences between
diagrams and data/information visualization [37],

4.5.2 Constraint-based interactivity
In the HCI literature, there’s a long line of work on authoring interactive user interfaces using
constraints. For instance, Garnet [41] and Amulet [42] use dataflow constraints to build highly
interactive UIs. In these systems, the author declaratively specifies constraints on the relationship
among graphical elements in terms of data dependencies (i.e. D = f(l1, l2, . . . , ln), and the
interactivity is handled by a constraint solver at runtime. Thinglab [7] supports simultaneous
equations for building simulations. At its core, the PENROSE system is a combination of dataflow
constraints (computations) and simultaneous equations (constraints and objectives). Therefore,
many of the techniques from this line of work may apply to supporting interactivity in PENROSE,
such as efficient incremental constraint solving [50].
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