
Generating Domain-Specific Programs for Diagram
Authoring with Large Language Models
Rijul Jain

rijul.jain@williams.edu
Williams College

USA

Wode Ni
woden@cs.cmu.edu

Carnegie Mellon University
USA

Joshua Sunshine
sunshine@cs.cmu.edu

Carnegie Mellon University
USA

Abstract
Large language models (LLMs) can generate programs in
general-purpose languages from prose descriptions, but are
not trained on many domain-specific languages (DSLs). Dia-
gram authoring with Penrose, a diagramming system using
three DSLs, exemplifies the utility of DSL program genera-
tion with LLMs, which enables diagram creation from prose.
We provide methods to conceptualize and evaluate the struc-
tures of one-shot LLM prompts to generate error-free DSL
programs and implement Penrose diagram creation from
prose using LLMs. We will evaluate our LLM prompt struc-
tures by testing prompt variations across different diagram-
ming domains and plan to run a user study to assess the ease
of LLM-augmented Penrose diagramming over other tools.

CCS Concepts: •Human-centered computing→ Visu-
alization systems and tools.

Keywords: domain-specific languages, large language mod-
els, visualization
ACM Reference Format:
Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-
Specific Programs for Diagram Authoring with Large Language
Models. In Companion Proceedings of the 2023 ACM SIGPLAN In-
ternational Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion ’23), Oc-
tober 22–27, 2023, Cascais, Portugal. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3618305.3623612

1 Problem and Motivation
Existing tools for authoring diagrams, from TikZ to Adobe
Illustrator to Penrose [3], a system which uses three domain-
specific languages (DSLs) to encode a high-level specification
for its diagrams, all pose a learning curve to some extent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0384-3/23/10. . . $15.00
https://doi.org/10.1145/3618305.3623612

Figure 1. For a prose instruction, GPT-4 consistently fails
to generate a legible SVG (left), and successfully generates
high-quality diagrams in Penrose (right)
Since large language models (LLMs) can generate computer
programs from natural language prompts, using LLMs to
create diagrams by generating the corresponding programs
in DSLs for graphics (e.g. SVG) from prose descriptions of
desired diagrams has the potential to make diagram author-
ing accessible to a wider audience by greatly diminishing
this learning curve. New diagrammers would be able to get
started more quickly and see visual feedback more imme-
diately than without a prose-to-diagram feature. However,
as shown at left in Figure 1, which shows the resulting di-
agram when GPT-4 is asked to generate an SVG depicting
“a Hamiltonian graph with 7 nodes and 13 edges with the
cycle highlighted,” LLMs do not perform well at producing
relatively low-level text which translates directly to visuals,
such as SVG and TikZ code. By contrast, with the methods
we describe in this work, GPT-4 generates code in Penrose’s
higher-level Substance DSL that results in the Penrose dia-
gram at right in Figure 1, which is correct and legible.
The main challenge with DSL program generation with

LLMs is that while LLMs can often generate programs in
general-purpose languages with zero-shot prompts contain-
ing only prose descriptions of the desired program, they are
ill-equipped to generate programs in this way for many DSLs
on which they may not be well trained, such as Substance.
To generate DSL programs that will compile and that reflect
the desired outcome using LLMs, it is necessary to provide
thorough information to the model to "teach" it a DSL.

In this work, therefore, we introduce methods for concep-
tualizing the structures of one-shot LLM prompts for DSL
program generation and evaluating prompt variations with
GPT-4 to find those that best produce error-free DSL pro-
grams matching the prose descriptions; we also integrate

https://orcid.org/0009-0003-1220-6313
https://orcid.org/0000-0002-5341-4958
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.1145/3618305.3623612
https://doi.org/10.1145/3618305.3623612

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Rijul Jain, Wode Ni, and Joshua Sunshine

GPT-4 with Edgeworth [1], a diagrammatic problem author-
ing tool using Penrose, to introduce prose-to-diagram ca-
pabilities for users. We intend for the results of this work
to illuminate the potential efficacy of LLM-augmented dia-
gram authoring over other tools and best practices for DSL
program generation with LLMs more generally.

2 Methods
Our prompt structures aim to effectively teach LLMs a new
language for the end goal of diagram authoring; to this end,
we pursue one-shot LLM prompts to minimize inference
time, ensuring that a prose-to-diagram method would be
practical and efficient to use. We conceptualize the possi-
ble elements of the structure of a one-shot prompt for DSL
program generation as shown in the following section; vari-
ations in prompt structure will involve including, omitting,
or modifying any of these elements.

2.1 Elements of the Prompt Structure
The first element consists of output instructions, which can
contain a role instruction, i.e. “You are a code generator. . . ”, as
well as instructions on comment syntax and solely outputting
code; we vary this element by including or omitting either
or both portions. Then, we provide a description of the DSL,
which we either include or omit; for Substance, we explain
Penrose and Substance’s function within it. Next, we give a
formal DSL specification: here, either a specialized BNF-style
formal grammar [2] for the Substance language or a schema
program written in Penrose’s Domain DSL, both particular
to the diagramming domain (i.e. graphs or geometry). We
include either the grammar or the schema, either annotated
or not, or omit both. For example, for a rule of a grammar
such as tname ::= "Vertex", we add a comment with a
description and sample usage:

// This type describes a vertex.
// Example usage: 'Vertex v1, v2, v3'

Then, we give a standalone sample program demonstrating
usage of all the types, functions, and predicates in the DSL;
it is either included, commented or not, or omitted. Next,
the prose description, which we modify by providing thor-
ough, low-level prose or terse, high-level prose, describes
the desired diagram. At the end, the final output instructions,
which we either include or omit, repeat the comment syntax
and only-code initial output instructions.

3 Evaluation
We performed initial tests on four variations with two differ-
ent annotated formal DSL specifications (BNF-style grammar
andDomain schema), either including or omitting standalone
sample programs with all other prompt elements constant,
where each variationwas evaluated on 54 total programs gen-
erated from 18 unique prompts with different prose descrip-
tions across 3 domains. The BNF-without-sample variation

Figure 2. LLM-augmented Edgeworth UI
had a 96.29% compile rate while BNF-with-sample achieved
79.62%. Domain-with-sample had an 85.18% compile rate
while Domain-without-sample achieved 68.51% (data here).
Wewill further evaluate our LLM prompt structure by testing
all variations in prompt structure on compile rate, diagram
correctness, and inference time across diagramming domains
(geometry, graphs, chemistry) and prose descriptions. We
will test Substance generation with LLMs against LLM gen-
eration of other diagramming DSLs (SVG and TikZ).
Figure 2 shows Edgeworth augmented with a prose-to-

diagram feature using the BNF-without-sample prompt vari-
ation. We will evaluate the efficacy of LLM-augmented di-
agram authoring by designing and running a user study to
examine the speed, ease of use, feature richness, and diagram
quality in the user experience provided by Edgeworth versus
that of other tools (Illustrator and Google Drawings).

4 Conclusion
We have introduced methods for one-shot DSL program gen-
eration for diagram authoring with LLMs and integrated
LLMs with the diagrammatic problem authoring tool Edge-
worth. Evaluating structural variations in LLM prompts will
provide insight for DSL program generation in general, while
enabling prose-to-diagram capabilities with Penrose is a step
towards democratizing diagram authoring.

References
[1] Hwei-Shin Harriman. 2021. Edgeworth: Authoring Diagrammatic Math

Problems Using Program Mutation. In Companion Proceedings of the
2021 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (Chicago, IL, USA)
(SPLASH Companion 2021). Association for Computing Machinery, New
York, NY, USA, 22–24. https://doi.org/10.1145/3484271.3484978

[2] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and
Yoon Kim. 2023. Grammar Prompting for Domain-Specific Language
Generation with Large Language Models. arXiv:2305.19234 [cs.CL]

[3] Katherine Ye,WodeNi, Max Krieger, DorMa’ayan, JennaWise, Jonathan
Aldrich, Joshua Sunshine, and Keenan Crane. 2020. Penrose: From
Mathematical Notation to Beautiful Diagrams. ACM Trans. Graph. 39,
4, Article 144 (aug 2020), 16 pages. https://doi.org/10.1145/3386569.
3392375

Received 2023-08-15; accepted 2023-08-30

https://github.com/rjainrjain/SPLASH-2023-data
https://doi.org/10.1145/3484271.3484978
https://arxiv.org/abs/2305.19234
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1145/3386569.3392375

	Abstract
	1 Problem and Motivation
	2 Methods
	2.1 Elements of the Prompt Structure

	3 Evaluation
	4 Conclusion
	References

