
Authoring Conceptual Diagrams by
Codifying Visual Representations

Wode “Nimo” Ni
倪沃德

CMU-S3D-24-110

October 2024

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Kenneth Koedinger (Co-chair)

Joshua Sunshine (Co-chair)
Brad Myers

Titus Barik (Apple)
Shriram Krishnamurthi (Brown University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2024 Wode “Nimo” Ni

This research was sponsored by the Software Engineering Institute award FA8702-15-D-0002, DARPA award FA87501620042; by the National
Security Agency award H9823018D0008; by Squirrel AI award 5007723; by the National Science Foundation awards 1910264, 2016586, 2119007,
and TI2346174; and by the CMU Open Source Office Fellowship, supported by the Alfred P. Sloan Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views or opinions of the
sponsoring organizations.

Keywords: Diagramming, Diagrammatic Problems, Visual Representations

To the pool gods.

iv

Abstract
Visual representations like diagrams are powerful tools for thought. Diagrams

are used extensively to understand abstract relationships, explain complex ideas, and
solve difficult problems.

I conducted an interview study to understand how domain experts create diagrams
and identified key limitations in current tools. To illustrate concepts effectively,
experts find appropriate visual representations and translate concepts into concrete
shapes. This translation step is not supported explicitly by existing diagramming tools.
Our participants reported how they create, adapt, and reuse visual representations
using both sketches and digital tools. However, they had trouble using digital tools
to transition from sketches and reuse components from earlier diagrams. Based
on these results, we suggest four opportunities of diagramming tools—exploration
support, representation salience, live engagement, and vocabulary correspondence—
that together enable a natural diagramming experience.

The findings from these studies informed the design of PENROSE, a language-
based system that allows authors to codify domain-specific concepts and their vi-
sual representations. In PENROSE, the visual representation is user-defined in a
constraint-based specification language; diagrams are then generated automatically
via constrained numerical optimization. The system is designed to be user-extensible
to many domains. In contrast to tools that specify diagrams via direct manipulation or
low-level graphics programming, PENROSE enables rapid creation and exploration of
diagrams that faithfully preserve the underlying visual representation. I demonstrate
the effectiveness and generality of the system by showing how it can be used to
illustrate a diverse set of concepts from various domains.

Atop PENROSE, I built EDGEWORTH, a tool designed to help educators easily
create visual problems. EDGEWORTH works in two main ways: firstly, it takes a single
diagram from the user and systematically alters it to produce many variations, which
the educator can then choose from to create multiple problems. Secondly, it automates
the layout of diagrams, ensuring consistent high quality without the need for manual
adjustments. I collected a dataset of diagrammatic multiple-choice problems to show
that EDGEWORTH can create problems in three domains: geometry, chemistry, and
discrete math. EDGEWORTH generated usable answer options within the first 10
diagram variations in 87% of authored problems. I then performed a user study to
measure authors’ efficiency at creating translation problems using EDGEWORTH,
compared with a conventional drawing tool. The results show that once authors make
a correct diagram, they are about 3 times faster at making diagrammatic options for
translation problems using EDGEWORTH compared to Google Drawings. Finally, in
response to walkthrough demonstrations, expert educators gave positive feedback on
EDGEWORTH’s utility and the real-world applicability of its outputs.

PENROSE and EDGEWORTH demonstrate that codifying visual representations
allow diagrams authors to reuse their design effort, produce new diagrams faster, and
thus make diagrams at a larger scale.

vi

Acknowledgments

I have a secret hobby of reading other people’s acknowledgments section in their dissertations. I
can’t believe I’m now writing my own. Well, it’s gotten to this part of the Ph.D. Lots of mixed
emotions about the last few years, mostly positive ones, but we’re here to thank people, so here
we go:

Figure 1: The author of this dis-
sertation (middle) and his doctoral
co-advisors, Josh (left) and Ken
(right), opening bottles of cham-
pagne some day after the defense.

First, thank you to my co-advisors Josh Sunshine and Ken
Koedinger. Josh brought me into Carnegie Mellon University
(CMU) in 2017 as a Research Experiences for Undergraduates in
Software Engineering (REUSE) student. In the summer of REUSE,
I built out an early version of PENROSE and had the best time ever.
That summer I learned that building software can be cool, and it
drove me to do this Ph.D. Crucially, Josh kept me moving forward,
not just in that summer, but also during my Ph.D. In 2018, I joined
CMU as a Ph.D. student, and needed to find a co-advisor. I cold-
emailed Ken in my first week about my interests in diagramming
and his prior work on diagram configurations and chunking [95].
16 days later, I got an email from Ken (“That’s an amazingly slow
reply!!” said Josh). A meeting later, we started working together.
Frankly, both Josh and I were complete amateurs in Ken’s research
areas, and we simply bonded with Ken over the same intellectual
curiosities about visual representations and how to help people
learn better with diagrams. Ken was extremely patient in guiding
me as I struggled to come up with good research projects in the
first few years. When I was in need of resources, Ken would never
hesitate to help. I’m truly grateful to have Ken as my advisor.

My undergraduate advisors, John MacCormick at Dickinson College and Stephen Edwards
at Columbia University got me into research and I will always be grateful for their guidance in
my formative years as a researcher. I’d also like to thank members of my thesis committee for
providing valuable feedback since my thesis proposal: Brad Myers, Shriram Krishnamurthi,
and Titus Barik. In addition my official advisors, some senior researchers mentored me and
helped me grow as a researcher: Keenan Crane, Jonathan Aldrich, Michael Hilton, Chinmay
Kulkarni, Ravi Chugh, and Sarah Chasins.

PENROSE wouldn’t exist without the great people who worked passionately and tirelessly
together on it. For that, I owe a lot to the PENROSE team and the open-source community. Josh,
Keenan, Jonathan, and Kai Ye had been my mentors and colleagues on PENROSE since day one.

vii

This founding team of people came from very different research areas, but shared the same goal
of making a good diagramming tool. This goal is not merely a “research vision,” but a concrete
desire to build something better and to ship it for real. It’s unusual in the research world to have
this desire, and it brought many challenges over the years. Are we building the right thing? Should
we write X in the system? Do we publish? If so, where? How often? Do we keep building
or do we evaluate? I still don’t have answers to many of these questions. It’s just difficult to
do interdisciplinary research while trying to build an actual open-source system. Yet despite
the difficulties, the team kept going and built PENROSE, which I am very proud of. Over the
years, many great students and researchers joined the “core team” and contributed significantly to
PENROSE. I learned tremendously from each of them and would like list some things I learned:
Kai is my first Ph.D. mentor, who taught me how to lead a diverse team like PENROSE and
communicate my work both within the team and to the world. I have a ton of respect for Keenan,
who elevated the standard of scientific communication for the entire team and showed us the
frontier of expert-quality diagramming. Jonathan introduced me to programming language design,
a central topic for PENROSE till this day. Sam Estep single-handedly improved PENROSE’s
performance by 100× and taught me how to build elegant and performant software. Without Max
Krieger, I won’t know how to build any web applications nor how to build anything cool and
fun. Yiliang “Leo” Liang has built many of the language features in PENROSE and spent many
hours teasing out obscure corner cases for every single feature. Jiří Minarčík is the first core
contributor from the open-source community, and I always learn from his beautiful demos that
push the limits of PENROSE. Hwei-Shin Harriman built EDGEWORTH from scratch during her
summer internship, and we’ve bonded over many things research and non-research. In my last
summer at CMU, I was fortunate to have both Kyle Lee and Griffin Teller on the PENROSE

team, both of them are turbo-charged CMU undergrads who showed me a level of intellectual
curiosity and work ethics that I’d never achieve as an undergrad. There are many other students
who worked on PENROSE as core team members, and I’m fortunate to have worked with you
all: Rijul Jain, Raven Rothkopf, Matt Davis, Rain Du, Josh Pollock, Lily Shellhammer,
Mia Tang, Stella Trout, Jenna Wise, and Helena Yang. Among the contributors to PENROSE,
I’d like to thank Wojtek Nawrocki for integrating PENROSE into Lean’s ProofWidgets4 and
Steven Clontz for introducing PENROSE and myself to the great code4math community. Our
open-source development also received support from CMU: thank you Tom Hughes and Sayeed
Choudhury for your advice and supporting me via the “CMU Open Source Office Fellowship,
supported by the Alfred P. Sloan Foundation,” the only fellowship I’d ever get because nobody
gives me fellowships for whatever reason, no matter how long my essays are.

I play pool, and this sport1 kept me sane throughout my Ph.D. I treat pool as my second
career and aim to be a third-rate professional player at some point. I didn’t achieve that during
the Ph.D. but I am working hard towards this goal. 33% of my grad school choice came down
to the availability of pool tables, and CMU turned out to be the best possible place to be. I’m
fortunate to become friends with and opponents of many great pool players over the years: Zixin
Wen, Brian Zhang, Yifu Cai, Andrew Spoto, Linpeng “Larry” Chen, Matthew Dai, Zixu
“Elias” Lu, Ziniu “Eric” Wu, Ruoyuan “Ryan” Liu, Shitong “Michael” Pang, Andrew Fu,
Shanshan Xie, Koutian Huang, Jiapeng “Billy” Zhou, Ava Schieferstein, Wayne Lam, Junyu

1I’ll play a race to 7 of 10-ball with anyone who doesn’t think it’s a sport.

viii

Huang, Peter Hammer, Ian Morales, Titus Priscu, Josh Phillips, Elina Lee, Zelin Ye, Dean
Jongwattanasinkul, Ryan Lin, Eric Wang, Hossein Baktash, Yuxiao “Nick” Chen, Spencer
Allen, Animesh Ghose, Pan Wang, Zhongwei “William” Ren, Richard Wang, Sida Cheng,
Eddie Martinez, Matt Shen, Mai Zhang, Yushi Hou, Chuck Farinella, and Mike Shamos.
Not everything in life is about work, and I have no lessons learned from pool that can help my
research directly. However, the long practice hours and careful studying of the game did teach me
to appreciate anyone who takes their thing seriously, no matter what the thing is. So I appreciate
everyone who does not give up their thing for a job, has ambitions in their hobbies, and spends the
hours to perfect their thing. Pool commentators like to say “pool gods” to refer to the randomness
in the game. I don’t believe in them, but believe in hard work and deliberate practice. Therefore,
the dedication to pool gods a few pages before was a joke. Obviously this document is dedicated
to my family, but I just wanted open with something in my character.

Having passed the age to actively make friends, I’m extremely fortunate to become friends
with many at CMU: Zeeshan Lakhani, Daye Nam, and Christopher Meiklejohn are my peers
in the Ph.D. program. Both Zeeshan and Chris had much more challenging circumstances in
the Ph.D. than I did, e.g., Zeeshan juggled a full-time job, a very lovely family, and the actual
Ph.D. research. Despite all that, both of them showed me what is good work and how to dedicate
oneself to do good work. From Zeeshan in particular, I learned tremendously about research and
life from our many conversations over coffees and drinks, in bars and around campus. Daye and
I shared the same offices throughout the Ph.D. and we enjoyed matching Korean and Chinese
words together. I’m sure both of us will always remember the first long conversation we had
during Ph.D. visit days, and many others in our office. Speaking of the offices, my officemates in
both Wean 5309 and TCS 317 are my closet support group and friends for life: Daye, Morgan
Evans, Ryan Zheyuan Shi, Melrose Roderick, Jane Hsieh, and Matthew Shneider. Despite
how difficult it was to park around CMU, I always enjoyed going to the office because of them and
many other friends at CMU. I enjoyed conversations with many of you in the hallways, around
the espresso machine, and other random places: Simon Chu, Ao Li, Daniel Ngo, Jenny Liang,
Manisha Mukherjee, Kyle Liang, Peter Carragher, Jenna Wise, Chu-Pan Wong, Shurui
Zhou, Tom Magelinski, Ivan Ruchkin, Ashutosh Pandey, Yining She, Haoze He, Sophia
Kolak, Courtney Miller, Vasu Vikram, Changjian “CJ” Zhang, Aidan Yang, Elizabeth
Gilbert, Luke Dramko, Nadia Nahar, Hongbo Fang, and Aidan Yang. In addition to human
friends, there are a few great fluffy friends I appreciate around TCS: Chanel, Mei, Tater, Moonie,
Flynn, and Truffle.

Outside of the S3D program, I was lucky to have met many good Ph.D. friends: Michael
Xieyang Liu and I are one year apart in the Ph.D. but shared many struggles and happy memories
during the program, and we even became neighbors for a while. Rohan Sawhney gave me a
lot of great advice throughout my Ph.D. and was always there whenever I had difficult career
decisions to make. Folks in the HCI+PL community such as Josh Pollock, Will Crichton, David
Moon, Brian Hempel, and Justin Lubin always gave me many inspirations in our conversations
at various conferences and workshops. I had a great time during my 2022 internship in Seattle
and met some great friends that I stayed in touch with: Rebecca Krosnick, Gabriel Matute,
Samantha Robertson, and Nava Haghighi. Peers I met in other contexts and want to thank
include: Xu Wang, Xiaofei Zhou, Wesley Hanwen Deng, Amber Horvath, Jianzhe Gu, Nick
Sharp, Jingya Chen, Sam Lau, Yixin Wu, Jingxi Xu, and many others. Similarly, some fluffy

ix

Figure 2: The family of the author left to right: Lee “LK” Kuai (李逵), Mingxia Wang (王明霞), Yuchen “Reese”
Sun (孙雨晨), Dinghua Ni (倪定华), and stuffed animals (pictured Qiuqiu, Touying Mao, Lili, Sam Sun, Mengmeng,
Dede, Meixiong Cao, Maotou Xiao, Keli Qiao, and Nini Ni, all in Christmas hats).

friends outside of TCS: Draky, Louie “Popcorn” Ogawa, Cece, Mars Wang, Scampi, Hex,
Octo, and Ruby.

Per convention, the most important humans and non-humans in my personal life are reserved
for the last part of this. Non-humans first: Lee “LK” Kuai (李逵) is our cat, and he supported
both my girlfriend and I in the final stretch of my Ph.D. and the first year of my girlfriend’s career.
Call me weird, but I treat stuff animals with respect and love, and I appreciate my own family of
them. See Figure 2, left and right, for cute photos of them.

Yuchen “Reese” Sun (孙雨晨) is my girlfriend and best friend in the last decade. We met at
Dickinson College and spent the years between 2016 and 2024 in a long-distance relationship.
I’m grateful for our relationship and feel extremely fortunate to have her in my life. Despite the
distance, she’s always been there for me. In many ways, I’ve been a pretty terrible partner, but she
puts up with me and made me a better man. Although I dropped loads of friends’ names in the
preceding pages, she’s my best, and depending on the definition of friendship, only friend. I’m
excited to finally reunite with you after this Ph.D. ordeal, and look forward to our life together in
the very near, and far, future.

I do believe I’m the luckiest son in the world because I have the best parents: Mingxia Wang
(王明霞) and Dinghua Ni (倪定华). They gave their all to raise me, and, crucially, gave me the
agency to make all decisions in life. My parents, like many Chinese parents, value education
greatly, but, unlike most, never forced me to excel in school. My childhood and teenage years
were filled with joy because of this important decision. In addition, I never took my education
for granted: these are my decision, and my parents sacrificed everything to support my decisions.
I cannot express my gratitude in words. My parents and I spent the majority of my Ph.D. apart
since the SARS-CoV-2 pandemic in early 2020, and I miss them dearly. Out of my own decision,
I always finish my academic degrees for them. I’m sure this Ph.D. will can make you both proud,
and you deserve to be proud not for my achievements, but for being the greatest parents. See you
in my next, and final, graduation after this.

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement and Research Questions . 2
1.3 Thesis Outline . 4

2 Background and Related Work 5
2.1 Diagrams . 5
2.2 Learning how to use diagrams . 6

2.2.1 Representational fluency and contrasting cases 7
2.2.2 Multiplicity of examples . 7

2.3 Digital diagramming tools . 8
2.4 Tools for Problem Generation . 9

3 Understanding the Diagramming Process 11
3.1 Introduction . 11
3.2 Method . 13

3.2.1 Participants and Recruitment . 13
3.2.2 Semi-structured Interviews . 13
3.2.3 Analysis . 14

3.3 Results . 14
3.3.1 Representation finding . 15
3.3.2 Choosing the right tools . 16
3.3.3 Reusing elements from earlier diagrams 18

3.4 Implications: Natural Diagramming . 20
3.4.1 Exploration Support . 21
3.4.2 Representation Salience . 22
3.4.3 Live Engagement . 23
3.4.4 Vocabulary Correspondence . 24

3.5 Summary . 25

4 PENROSE: From Notations to Beautiful Diagrams 27
4.1 Introduction . 28
4.2 System Design . 28

4.2.1 Language-Based Specification . 30

xi

4.2.2 Optimization-Based Synthesis . 33
4.2.3 Plugins . 34

4.3 Language Framework . 35
4.3.1 The DOMAIN Schema . 35
4.3.2 The SUBSTANCE Language . 35
4.3.3 The STYLE language . 37

4.4 Layout engine . 40
4.4.1 Compiler . 40
4.4.2 Solver . 42
4.4.3 Plugins . 43
4.4.4 Rendering . 43
4.4.5 Development Environment . 44
4.4.6 Implementation . 44

4.5 Examples and Evaluation . 45
4.5.1 Sets . 45
4.5.2 Functions . 46
4.5.3 Geometry . 46
4.5.4 Linear Algebra . 51
4.5.5 Meshes . 52
4.5.6 Ray Tracing . 52
4.5.7 Large-Scale Diagram Generation . 57
4.5.8 Performance Evaluation . 57

4.6 Open-Source Development . 59
4.6.1 Evolution of the implementation . 59
4.6.2 Development infrastructure . 59
4.6.3 Open-source community . 59

4.7 Limitations, Recent Developments, and Future Work 60
4.7.1 Language expressiveness . 60
4.7.2 Layout Optimization . 65
4.7.3 Extensibility . 67
4.7.4 Accessibility . 67

4.8 Summary . 68

5 EDGEWORTH: Diagrammatic Problem Authoring at Scale 71
5.1 Introduction . 71
5.2 Formative interview . 73
5.3 System Design of EDGEWORTH . 74

5.3.1 Author Workflow . 74
5.3.2 Diagram Notation and Layout . 76
5.3.3 Program Mutation . 77

5.4 Translation Problem Dataset . 78
5.4.1 Summary Statistics . 79
5.4.2 Euclidean Geometry . 79
5.4.3 General Chemistry: Lewis Structures 81

xii

5.4.4 Discrete Math: Graphs . 83
5.5 Summary . 84

6 Evaluating EDGEWORTH 87
6.1 Reliability Evaluation (RQ3.1) . 88

6.1.1 Methods . 88
6.1.2 Results . 88

6.2 Experimental Evaluation of Authoring Efficiency (RQ3.2) 89
6.2.1 Study Design . 89
6.2.2 Results . 92
6.2.3 Discussion . 95

6.3 Expert Walkthrough Demonstration and Feedback (RQ3.3) 96
6.3.1 Participants and Procedure . 96
6.3.2 Ecological Validity of Generated Problems 97
6.3.3 Expert Feedback . 97

6.4 Limitations of the Studies . 99
6.4.1 Ecological Validity . 99
6.4.2 Tool . 99
6.4.3 Authoring Speed vs. Problem Quality 99

6.5 Limitations of the EDGEWORTH System . 101
6.5.1 Numerical and textual variations . 101
6.5.2 Usability of UI components . 101
6.5.3 New domains of instruction . 101
6.5.4 Mismatches with the author’s intents . 102

6.6 Summary . 103

7 Conclusion and Future Work 105
7.1 Summary of contributions . 105
7.2 Future work . 105

7.2.1 Natural diagramming . 106
7.2.2 Composable visual representations . 107
7.2.3 Knowledge-infused problem variation 108
7.2.4 Interactive diagrams . 109

7.3 Concluding remarks . 110

A Diagrammer Semi-Structured Interview Protocol 111
A.1 Introduction and Kick-off . 111
A.2 Past Diagramming Experience . 111
A.3 Diagramming Practice and Tools . 112
A.4 Reuse Questions . 112
A.5 Audience Reception . 113

B Diagrammer Interview Codebook 115

xiii

C Walkthrough of a PENROSE Trio for Euler Diagram 119
C.1 DOMAIN program for sets . 119
C.2 Declaring Sets and Subset Relations in SUBSTANCE 120
C.3 Styling Euler Diagrams using STYLE . 120
C.4 Layout Optimization and Rendering . 122

D Three STYLE Programs for the PENROSE Set Theory Domain 123
D.1 Euler . 123
D.2 Euler 3D . 124
D.3 Tree . 125

E PENROSE Registry Benchmark 129
E.1 Data . 129

F PENROSE Registry Diagrams 139

G EDGEWORTH Formative Interview Protocol 147
G.1 Introduction . 147
G.2 Needs and Requirements . 147
G.3 Tooling . 148
G.4 Authoring Process . 148
G.5 Meta . 148

H EDGEWORTH Translation Problem Dataset 149

I Coding Results from the EDGEWORTH Reliability Evaluation 159

J EDGEWORTH User Study Instructions 171

K EDGEWORTH Expert Walkthrough Demonstration Protocol 191

Bibliography 193

xiv

List of Figures

1 The author of this dissertation (middle) and his doctoral co-advisors, Josh (left)
and Ken (right), opening bottles of champagne some day after the defense. vii

2 The family of the author left to right: Lee “LK” Kuai (李逵), Mingxia Wang (王
明霞), Yuchen “Reese” Sun (孙雨晨), Dinghua Ni (倪定华), and stuffed animals
(pictured Qiuqiu, Touying Mao, Lili, Sam Sun, Mengmeng, Dede, Meixiong Cao,
Maotou Xiao, Keli Qiao, and Nini Ni, all in Christmas hats). x

2.1 Several examples of ancient diagrams, from left to right: (1) Phases of the
Moon: Abu Rayhan Muhammad ibn Ahmad al-Biruni (Iranian, 973-1048), (2)
Babylonian clay tablet diagramming an approximation of

√
2 (1900 -1700 BCE),

and (3) Geometric proof of the Pythagorean theorem in Zhoubi Suanjing周髀
算经 (1st century BCE). 5

3.1 Diagrams explain concepts visually in many domains, e.g.,: (a) Diffie-Hellman
key exchange with colors representing prime multiplication [184]. (b) Linking two
views of the Klein 4-group [190]. (c) Unrolling a recurrent LSTM network [134].
(d) Natural numbers as 2D areas in a visual proof [72]. 11

3.2 Consider a truck moving rightward (a, adopted from [103]) on the ground, and
visualize the forces that are exerted to cart B. A good visual representation (b) of
forces on cart B is easily understandable, where the dot represents the cart and the
arrows represent the forces exerted on it. On the other hand, (c) loses essential
information and (d) is non-standard and harder to understand. 15

3.3 P9 made sketches to explain projector and camera calibration. The complexity
of these sketches increased and visual representations evolve over time. Left:
an initial sketch represents connectivity as line segments. Right: a later sketch
represent connectivity as arrows. 17

3.4 P13 manually tracks versions of a diagram in Illustrator using multiple canvases. 19

3.5 P3 uses a cheat sheet to track frequently used style attributes. 20

3.6 P7 organizes all previously made TikZ diagrams in a single document. 21

xv

4.1 PENROSE is a framework for specifying how mathematical statements should be
interpreted as visual diagrams. A clean separation between abstract mathematical
objects and their visual representation provides new capabilities beyond existing
code- or GUI-based tools. Here, for instance, the same set of statements (left) is
given three different visual interpretations (right), via Euclidean, spherical, and
hyperbolic geometry. 27

4.2 High-level pipeline: a compiler translates mathematical statements and a chosen
visual representation into a constrained optimization problem. This problem is
then solved numerically to produce one or more diagrams. 29

4.3 An optimization-based approach has myriad benefits. Here a logically inconsistent
program fails gracefully, providing visual intuition for why the given statements
cannot hold. 29

4.4 By specifying diagrams in terms of abstract relationships rather than explicit
graphical directives, they are easily adapted to a wide variety of use cases. Here
we use identical PENROSE code to generate ray tracing diagrams for several
targets (Section 4.5.6). The STYLE program for this domain makes use of a plugin
that expands the regular expression for light paths based on the canvas size, i.e.,
small canvases get fewer bounces in the light path. Though the arrangement and
number of objects changes in each example, the meaning remains the same. . . . 30

4.5 Most PENROSE users need only use the SUBSTANCE language, but can benefit
from packages written by more expert DOMAIN and STYLE programmers. This is
similar to the TEXecosystem, where most users only write documents, but benefit
from expert-authored packages. 30

4.6 One benefit of a unified framework is that different domains are easily combined.
Here, two existing packages (for meshes and set theory) were combined to il-
lustrate that a simplicial complex (left) is closed with respect to taking subsets
(right). 31

4.7 Extensibility enables users to adopt conventions and notation (center) that reflect
the way they naturally write mathematical prose (left). Here, the resulting diagram
(right) plays the role of the concluding statement. 32

4.8 An optimization-based approach makes it possible to jointly optimize visual
attributes that are difficult to coordinate by hand. Here for instance we optimize
color contrast according to the spatial proximity of adjacent disks (left to right),
ultimately discovering a two-color solution (far right). The system can also be
used to debug the optimization process itself—in this case by drawing the hue of
each disk as a dot on a color wheel. 33

4.9 A language-based design makes it easy to build tools on top of PENROSE that
provide additional power. Here we use standard techniques from program synthe-
sis (Section 4.5.7) to automatically enumerate how the given relationships can be
realized. Generating such examples helps to see important corner cases that might
be missed when drawing diagrams by hand (where perhaps the top-left diagram
most easily comes to mind). 34

xvi

4.10 A DOMAIN schema specifies the building blocks available in a given domain, as
well as any associated syntactic sugar. This schema (abbreviated) enumerates
some basic constructs from linear algebra. 36

4.11 When used with the STYLE defined in Figure 4.12, this SUBSTANCE code (with
or without syntactic sugar) produces the diagram shown at right. 36

4.12 The STYLE program defining the visual style used in Figure 4.11, right. Note that
this STYLE program can be reused for many different SUBSTANCE programs in
the same domain. 38

4.13 Pipeline view of the layout engine. Rather than a single static image, compilation
yields an optimization problem that can be solved and re-solved to produce many
diagrams, or (in principle) used in an interactive tool. 40

4.14 Applying the mapping defined by STYLE code to a SUBSTANCE program yields
a graph that describes how to draw the diagram—here, for part of Figure 4.11.
Some values are known (in blue), whereas others (in orange) depend on unknowns
that must be determined via optimization. 41

4.15 The computation graph is further expanded to produce graphs representing the
objective and constraint space for our optimization problem. From there, we can
use automatic differentiation to obtain derivatives. This figure depicts part of the
optimization graph for Figure 4.11. 41

4.16 Our solver can lay out diagrams even if we do not initially know how to satisfy
all the constraints. Here we show several steps of optimization. 42

4.17 Our system supports integration with web-based applications. Here a PENROSE

IDE provides automatic syntax highlighting and autocomplete for any user-defined
domain. 44

4.18 Two STYLE programs illustrate classification of life in biology as an Euler diagram
(left) and a tree diagram (right). 45

4.19 Here, some SUBSTANCE code is used to specify set relationships. Different
STYLE programs not only tweak the visual style (e.g., flat vs. shaded disks), but
allow one to use a completely different visual representation (e.g., a tree showing
set inclusions). Sets.sty above describes the flat disk style. 47

4.20 Different visual representations provide different ways of thinking about an idea.
Here, the notion of injections, bijections, and surjections is illustrated in both
discrete (left) and continuous (right) styles. In the former, functions with the
desired properties are randomly generated by an SMT solver, allowing the user to
learn from many different examples. 48

4.21 Here, abstract function composition is realized as explicit composition of functions
produced via an SMT solver, illustrating the fact that the composition of an
injection and a bijection is an injection. 49

4.22 Diagrams used as inspiration for the STYLEs in Figure 4.23. 49
4.23 The cascading design of STYLE enables one to modify a base style with relatively

little code. Here the two SUBSTANCE programs from Figure 5.2 and the listing
above are visualized in three different styles, all of which build on the same basic
constraints and objectives. 50

xvii

4.24 Once a complex diagram has been built, it can be easily broken into pieces or
stages by, e.g., commenting out lines of SUBSTANCE code. Here we illustrate
steps in Euclid’s proof of the Pythagorean theorem, turning Byrne’s static figure
(far right) into a progressive “comic strip.” . 51

4.25 Here we compose linear maps, showing addition and scaling, to illustrate the two
defining properties of linear maps. 53

4.26 A language-based specification makes it easy to visually inspect data structures or
assemble progressive diagrams with only minor changes to program code. Here
we draw the simplicial link by building it up from simpler constituent operations. 54

4.27 Domain-specific notation makes it easy to explore an idea by trying out many
different examples. Here several subsets of a simplicial complex are specified
(top) to explore the definition of the “link” (bottom). An external plugin generates
random example meshes, further enriching exploration. 55

4.28 When drawing ray tracing diagrams by hand, it can be difficult to construct
geometry that permits the desired path types. Here we jointly optimize path and
scene geometry to match multiple path types simultaneously. Shown are several
diagrams generated for the same program. A specular reflection (S) is represented
as a mirror reflection, whereas a diffuse reflection (D) is represented as a bounce
off of one of the walls. 56

4.29 We evaluated the performance of the PENROSE compiler by running it on a large
collection of programs, showing that the execution time of the compiler grows
slowly as the number of selector matches increases (left). To stress-test the system
and collect timing information, we generated and visualized random SUBSTANCE

programs of different sizes, revealing that optimization dominates the execution
time (right). 58

4.30 Various diagrams generated with PENROSE and widgets for Lean proofs: (a)
commutative diagrams in category theory, (b) Euclidean geometry proof widget,
and (c) Euler diagram for subset relations. 69

4.31 PENROSE may provide automatic re-layout for different diagram localizations. For
instance, the longer words found in German take up more space than the shorter
words found in Japanese—requiring a substantially different layout. Performing
new layouts by hand for each language can be time consuming, meaning that
diagrams for other languages are often omitted or left un-translated. 70

4.32 Diagrams often use symbols and abstract shapes and can be hard to understand.
This figure is a mock-up of a lightweight markup language in the form of SUB-
STANCE comments: the markup language has a markdown-like syntax, but allows
splices of SUBSTANCE variables and runtime values. The mock-up shows a user
interface that automatically display a tooltip stack that explains what each shape
represents. 70

5.1 left: a translation problem that helps students discern the structure of linear
equations (adapted from [91]). right: an EDGEWORTH generated problem that
trains student to recognize diagram configurations [96] for triangle congruence. . 71

xviii

5.2 EDGEWORTH is a diagrammatic problem authoring tool that automatically gen-
erates diagram variations from a single diagram: the author creates an example
diagram (1), then EDGEWORTH generates a myriad of diagram variations (2),
from which the author selects diagrams (3) to form a diagrammatic multiple
choice problem (4). 72

5.3 The user interface of EDGEWORTH. The author first provides a textual prompt (a)
as an input scenario in SUBSTANCE notation (b). Then, clicking “Generate Vari-
ations” (e) generates the specified number of diagram variations (d) at random
based on a string seed and weights on Add, Delete, or Edit mutations (c). In the
diagram panel, the top-left diagram (f) corresponds to the input scenario and the
rest are diagram variations generated by EDGEWORTH. The author can visually
select diagrams (g) to assemble a diagrammatic multiple-choice problem (h).

If needed, the author can fine-tune the mutator using “Advanced options” (i j). 75
5.4 Diagram and SUBSTANCE notation for the Lewis structure of phosgene (COCl2). 76
5.5 An example problem in Holt Geometry [28] about triangle congruence (left)

replicated in EDGEWORTH (right). Colored shadings are added for clarity. 79
5.6 The first ten diagram variations generated by EDGEWORTH for the problem shown

in Figure 5.5. 82
5.7 An example problem in general chemistry that asks the student to identify the

correct Lewis structure for HCN. 83
5.8 An example problem that asks the student to identify graphs with Euler circuits. . 84

6.1 Tasks used in the EDGEWORTH experimental evaluation. Each participant is given
a textual prompt and a correct diagram to this prompt at the beginning of each task.
They are asked to first re-produce the correct diagram using the designated tool
in the correct segment, and then edit this diagram to produce up to 10 incorrect
diagrams to the prompt in the incorrect segment. 91

6.2 Participants were provided both Google Drawings and SUBSTANCE examples
throughout the study. The SUBSTANCE code (left) was given in the EDGE-
WORTH tasks and a Google Drawings file that visually resembles the PENROSE

output (right) was given for the Google Drawings tasks. 92
6.3 Violin plots showing the distribution of time-on-task for both correct (Left)

and incorrect (Right) segments of tasks. The shape of the violins represents a
smoothed approximation of the data distribution, with wider sections representing
higher density. The embedded box plots within the violins show the median
(white line) and inter-quartile range (thick black bar), with the whiskers (thin
black lines) extending to the data range. 94

6.4 Screenshots of Google Drawings (top) and EDGEWORTH selections (bottom) of
diagrams by P4 of the user study (Section 6.2). They are instances of “shortcuts”
participants took when using both tools, avoiding large layout edits (top) in Google
Drawings and selecting counterexamples seemingly at random in EDGEWORTH

(bottom). 100

xix

6.5 A screenshot of the EDGEWORTH interface, after generating examples for a
translation problem focusing on improper subsets. The first pool of mutants isn’t
suitable for this problem. 103

C.1 Example Euler diagrams made in PENROSE . 119
C.2 An example SUBSTANCE program in the set theory domain illustrated with the

Euler diagram STYLE. 120
C.3 PENROSE-generated diagram after the forall Set X Euler diagram STYLE block.121
C.4 Variations of the same SUBSTANCE program for sets rendered with different

intializations using the “resample” mechanism in PENROSE. 122

xx

List of Tables

3.1 Interview participants’ primary domains. 14

6.1 Distribution of diagram variation classes. 89
6.2 Participants were divided into 4 groups by the tools they used and diagramming

domains of the tasks. Each row corresponds to the task sequence of one of the
groups. Participants used both EDGEWORTH and Google Drawings to author
problems for two prompts in chemistry or geometry (Figure 6.2). 90

6.3 Summary of Average Time, Diagram Count, and Time Per Diagram by Domain
for both chemistry and geometry domains, and two segments of each task (Sec-
tion 6.2.1.2). Each participant produces up to 1 correct diagram first and then
up to 10 incorrect diagrams. The time data reported under “correct” segment are
for the correct diagram and the time for “incorrect” segment are for the incorrect
diagrams. 93

6.4 Survey responses for chemistry and geometry tasks using EDGEWORTH and
Google Drawings. Higher numbers (visualized in green hue) indicates positive
responses and lower numbers (yellow and red hue) negative responses. 95

6.5 Demographics of walkthrough demonstration participants. 96

xxi

xxii

Chapter 1

Introduction

1.1 Motivation
In Doing with images makes symbols, Alan Kay describes the widespread use of visual represen-
tations among experts in math and physics1:

Jacques Hadamard, the famous French mathematician, in the late stages of his life,
decided to poll his 99 buddies, who made up together the 100 great mathematicians
and physicists on the earth, and he asked them, “How do you do your thing?” They
were all personal friends of his, so they wrote back depositions. Only a few, out of
the hundred, claimed to use mathematical symbology at all. Quite a surprise. All of
them said they did it mostly in imagery or figurative terms.[88]

Cognitive science research corroborates Kay’s insight that visual representations are powerful
tools of thought. In a more controlled setting, Koedinger and Anderson [96] showed evidence of
experts using an internal diagrammatic representation to skip steps when solving geometry proof
problems. In “Why a Diagram is (Sometimes) Worth Ten Thousand Words”, Larkin and Simon
[103] theorized that effective diagrammatic representations are computationally more efficient
and thus help problem-solving.

One caveat, as suggested in the “(sometimes)” in the title of [103], is that the efficacy of
diagrams depends on both the diagram design and the problem-solver’s ability to use diagrams.
In the same talk, Kay lamented that while experts seemed to have this ability, students were not
getting enough training to do the same. Kay continues:

The sad part. . . is that every child in the United States is taught math and physics
through this [symbolic] channel, the channel that almost no adult creative mathemati-
cian or physicist uses to do it. . . They use this channel to communicate, but not to do
their thing.[88]

Learning science researchers have advocated for explicitly using diagrams in the learning process
to enable more robust learning [117]. They further suggested that when students work with
symbols and diagrams together, they build better conceptual understanding and more flexible
mental models that go beyond memorized procedures [147, 91, 183].

1Kay is summarizing Jacques Hadamard’s book entitled The Mathematician’s Mind: The Psychology of Invention
in the Mathematical Field (1945)[70].

1

Diagramming complex concepts involves transforming abstract ideas into tangible illustrations.
While experts have powerful visual intuitions in their heads, it’s difficult to communicate them to
each other and teach them to students. As William Thurston noted in “On proof and progress in
mathematics”:

People have very powerful facilities for taking in information visually or kinestheti-
cally, and thinking with their spatial sense. On the other hand, they do not have a very
good built-in facility for inverse vision, that is, turning an internal spatial understand-
ing back into a two-dimensional image. Consequently, mathematicians usually have
fewer and poorer figures in their papers and books than in their heads. [171, p. 164]

Indeed, this “inverse vision” process demands both a deep understanding of the subject matter and,
at present, expertise in graphical design and tools—skills that are not commonly found together.
As a result, despite the demand for diagrams, the ability to create effective diagrams is limited to
a small group of specialists [42]. Further, the diagrams made by these experts cannot be easily
reproduced. Consequently, much of the research literature and learning materials are sparsely or
poorly illustrated.

This dissertation aims to bring diagrams and visual intuition to more people by identifying the
tooling challenges in diagramming and building a series of artifacts that help people author and
reuse diagrams.

1.2 Thesis Statement and Research Questions
The thesis of this dissertation is:

New diagramming tools that codify visual representations* support educational
content authors in creating quality diagrammatic problems much more efficiently.
*A diagramming tool that codifies visual representations enables users to express domain concepts and

specify a mapping between concepts and visual representations, and from those inputs automatically generates
visualizations that conform to the specification.

I investigated how experts create diagrams via semi-structured interviews (Chapter 3), focusing
on the following research question2:

RQ1: How do diagrammers utilize the strengths and cope with the limitations of their
diagramming tools?

The interviews revealed that existing diagramming tools often require hours of low-level tweaking
of geometric primitives and do not capture the core task of diagramming: representing ideas
visually. Consequently, the diagrams created by existing tools don’t have semantics, as they
are merely a collection of pixels and geometric primitives. Others who want to build upon
existing diagrams often cannot reproduce the work, because diagrams are currently delivered in

2All the work presented in this proposal was carried out in collaboration with others, and to recognize this, I use
“we” rather than the singular first person in the subsequent chapters.

2

low-level formats such as rasterized images and Scalable Vector Graphics (SVG). The results
from the interviews led to a series of design goals for next-generation diagramming tools, one of
which is representation salience: tools should allow authors to define visual representations for
domain-specific concepts in a manageable, scalable, and reusable way.

To support representational salience, I designed a tool called PENROSE (Chapter 4). Diagrams
made in PENROSE contain the source information of diagram design: using PENROSE, diagram
authors encode domain-specific concepts and how to visually represent them in plain-text lan-
guages. PENROSE generates diagrams from this encoding through automatic layout. I demonstrate
the effectiveness and generality of the system by showing how it can be used to encode visual
representations across a wide range of domains:

RQ2: Can PENROSE’s language-based specification express a wide range of diagramming
domains without requiring significant modification to the system’s core design?

PENROSE has several potential audiences of users and use cases. I chose to validate its
usefulness for making diagrammatic problems because:

• the learning sciences literature provides ample evidence for the use of diagrammatic
problems [147, 117, 20].

• by making diagrammatic problems using PENROSE, problem authors provide feedback on
the ecological validity of PENROSE-generated diagrams.

• problem authors are a concrete user group that have high demand for more diagrams and
use them for social good.

Atop PENROSE, I built EDGEWORTH, a tool designed to help educators create visual problems
(Chapter 5). In particular, EDGEWORTH aims to speed up and scale up the authoring of translation
problems, problems that train students to read and use diagrams by asking them to match up
symbolic/textual statements and diagrams. EDGEWORTH works in two main ways: firstly, it takes
a single diagram from the user and systematically alters it to produce many diagram variations,
which the educator can then choose from to create multiple problems. Secondly, it automates
the layout of diagrams using PENROSE, ensuring consistent visual quality without the need for
manual adjustments. To assess EDGEWORTH, I aim to answer the following research questions
about various aspects of the system:

RQ3.1 Reliability: Can EDGEWORTH reliably generate translation problems within relatively
few diagram variations?
RQ3.2 Efficiency: Comparing with a conventional drawing tool, are authors more efficient
at making translation problems using EDGEWORTH?
RQ3.3 Ecological validity: Do real-world instructors consider EDGEWORTH-generated
translation problems to be useful?

To answer these questions, I carried out: a technical evaluation to evaluate reliability, a user
study to evaluate efficiency, and expert walkthrough demonstrations to evaluate ecological validity
(Chapter 6).

3

1.3 Thesis Outline
In Chapter 2, I first provide some historical context and discuss related work on diagram use
and diagramming tools. In the rest of this dissertation, I present a body of work that is a mix
of descriptive empirical research and artifacts of novel interactive tools [187]. Chapter 3 is
an empirical study on existing diagramming processes and limitations of existing tools. The
findings of this study drive the design and implementation of PENROSE, presented in Chapter 4.
PENROSE’s design responds directly to the limitations identified in current practices, aiming
to bridge the gap between abstract conceptualization and tangible representation. Therefore,
the research contribution is the artifact [187] of a novel diagramming system. The subsequent
chapters detail how EDGEWORTH, another artifact contribution built atop PENROSE, address
the identified needs and support the process of diagrammatic problem authoring in educational
settings. In Chapter 5, I present the system design of EDGEWORTH and show its expressiveness
by collecting a dataset of diagrammatic translation problems in multiple domains. Chapter 6
describes a series of evaluative studies of EDGEWORTH. In Chapter 7, I assess the contributions
and insights developed in this dissertation and outline potential directions for future research of
diagramming.

4

Chapter 2

Background and Related Work

Figure 2.1: Several examples of ancient diagrams, from left to right: (1) Phases of the Moon: Abu Rayhan
Muhammad ibn Ahmad al-Biruni (Iranian, 973-1048), (2) Babylonian clay tablet diagramming an approximation
of
√
2 (1900 -1700 BCE), and (3) Geometric proof of the Pythagorean theorem in Zhoubi Suanjing周髀算经 (1st

century BCE).
This chapter provides background on diagrams in general, existing diagramming tools, and

research on using diagrams for learning.

2.1 Diagrams

Tversky [175, 176] defines diagrams as “an arrangement of marks on a virtual page (stone, paper,
or screen) that represents a set of ideas and their relations”. This definition is broad enough to
include many ancient and modern graphical representations of ideas, including graphs, charts,
infographics, and many more. Under this definition, diagrams are perhaps one of the oldest
form of human communication and expression. For instance, Figure 2.1 shows a few examples
of diagrams in ancient times around the world. Although there are many more definitions of
diagrams (for example, [15, 31, 73, 6, 174]), this chapter does not aim to provide a comprehensive
discussion of how diagrams are defined. Rather, we examine two aspects of a diagram to motivate
the types of graphics this dissertation focuses on: content and utility.

First, this dissertation contribute tools (Chapters 4 and 5) that produce diagrams that depict
logical, non-quantitative concepts, rather than quantitative data. As we will discuss in Section 2.3
and Chapter 3, this focus on conceptual diagrams is largely driven by the relative dearth of tools
for making conceptual diagrams. In contrast, statistical graphics [185] largely depict quantitative

5

data, and are well supported by authoring tools [23, 158].
The second aspect is the utility of diagrams, which set them apart from decorative paintings,

photos, floor plans, and more. Ervin [53] distinguishes between pictorial and propositional graph-
ics: instead of directly visualizing data or depicting naturalistic scenes, diagrams (propositional
graphics in Ervin’s terms) “constitute knowledge and embody media-independent abstractions for
inference-making.” The specific utility of diagrams for inference-making is significant enough to
prompt psychologists and cognitive scientists to study their role in problem-solving and learning.
Diagrams have been shown to have cognitive benefits to reasoning and problem-solving [103,
95, 117]. Compared to textual representations, diagrams facilitate fast recognition and direct
inference by making the most relevant information explicit and easily findable [103]. As an exter-
nal representation of abstract structures of tasks, diagrams can work together with one’s mental
representation and are an indispensable part for accomplishing distributed cognitive tasks [194].
Akin to Ervin [54], Hegarty and Kozhevnikov [74] distinguish between pictorial and schematic
visual representations and show that schematic representations of relative spatial relationships
significantly outperform pictorial ones that encode visual appearances. In addition to their values
as an external, static representation of knowledge, diagrams are also beneficial when people
learn with, instead of from them [172]. In educational contexts, explicit training of drawing,
including the creation of new visual representations and adoption of new ones, significantly
improve students’ ability to work with multiple representations and improve learning, reasoning,
and communication skills [1]. Moreover, creating diagrams as visual explanations also improves
learning, since they can act as a check for completeness and a medium for inference [21].

Beyond diagrams’ utility for more efficient cognitive inference and learning, logicians, mathe-
maticians, and philosophers have argued for diagrams’ fundamental role in reasoning. Historically,
diagrams were often dismissed as mere illustrations—supplementary tools rather than central
components of logical arguments. This traditional view has been predominantly influenced by
the dominance of symbolic languages in the history of logic, where precision and formal rigor
were prioritized over visual representation [162]. Peirce’s existential graphs [143] are a form
of diagrammatic logic that he argued could represent logical relations in a manner both clearer
and more intuitive than traditional symbolic logic. Peirce believed that existential graphs could
express logical relationships with a degree of generality and precision that rivals, if not surpasses,
that of symbolic logic, particularly in their ability to represent the continuity of logical processes.
Jon Barwise and John Etchemendy’s work on the importance of diagrams in logical reasoning [12]
aligns closely with the earlier insights of Peirce. Peirce’s existential graphs, which visually
represent logical propositions and their relationships, serve as a precursor to Barwise’s concept
of “heterogeneous reasoning,” [11] where visual and symbolic methods are integrated to solve
logical problems more effectively.

2.2 Learning how to use diagrams
Whether for more efficient problem-solving or logical reasoning, one must learn how to use
diagrams properly. At the end of “Why a Diagram is (Sometimes) Worth Ten Thousand Words”,
Larkin and Simon [103] noted that:

[D]iagrams are useful only to those who know the appropriate computational pro-

6

cesses for taking advantage of them. Furthermore, a problem solver often also needs
the knowledge of how to construct a “good” diagram that lets him take advantage of
the virtues [of diagrams] we discussed. [103, p. 99]

In this section, we provide background on why students need to practice for better fluency in
visual representations and how diagram variations may help students practice using them more
effectively.

2.2.1 Representational fluency and contrasting cases
Representational fluency refers to the ability to quickly understand a visual representation and to
use it to solve domain-specific tasks [147]. To become representationally fluent, an important first
step is to identify meaningful aspects of a particular representation. Kellman et al. [91] show that
mapping between symbolic and visual representations leads to intuitions about the way equivalent
structures relate to each other. The learning that results from constructing connections between
symbols and diagrams can be more flexible. Students are better at transferring their learning from
the problems they have explicitly practiced to more open-ended problems and their conceptual
understanding is better [71].

In addition to mapping between representations, Marton [114] also showed that contrasting
cases help students discern crucial parts of a particular representation. Early on, students benefit
from discerning instances and noninstances that differ in only one dimension of variation. As
students become more fluent, a fusion of multiple varying dimensions in problems may be
necessary [36]. Arnheim [6] characterized this need for many diagrams (or animation of diagrams)
in Visual Thinking:

The usual illustrations in textbooks and on the blackboard help to make a problem
visible, but they also freeze it at one phase of the range to which the proposition
refers. Therefore, they tempt the student to mistake accidental circumstances for
essential ones. The solution is not to leave out illustrations but either to produce
mobile models. . . or, at least, to use immobile illustrations in such a way that the
student realizes which of their dimensions are variables. [6, p. 182]

2.2.2 Multiplicity of examples
Indeed, in addition to training representational fluency, multiple examples and repeated, varied
practice are well-documented strategies for broader learning goals in the learning science literature.
Many studies have demonstrated substantial science, technology, engineering, and mathematics
(STEM) learning benefits for multiple worked examples per topic [141]. Equally important is
research indicating the importance of active learning [35, 44] and repeated practice [52, 160] that
occurs within varied contexts [138, 154] and involves direct explanatory feedback [91].

Rau [148] reports that, unfortunately, providing computational support for representational
fluency is time-consuming with current tools. Our formative study (Section 5.2) confirmed this
claim and revealed barriers resulting from the limitations of diagram authoring tools. To address
these limitations, EDGEWORTH (Chapters 5 and 6) aims to simplify the workflow for creating
diagram variations for repeated practice.

7

2.3 Digital diagramming tools

As this dissertation investigates diagram authoring empirically (Chapter 3) and contributes a new
diagramming tool (PENROSE, Chapter 4), we survey existing digital tools for making diagrams.
Although many diagramming tools support both text-based and graphical interfaces, we categorize
current diagramming tools by their dominant mode of interaction: programming-language based
(PL) tools and direct manipulation (DM) tools.

We use PL tools to refer to text-based diagramming tools, including imperative or declara-
tive programming languages, libraries, frameworks, and embedded domain-specific languages.
General-purpose tools such as Processing [150], Asymtote [24], PGF/TikZ, and Paper.js1 provide
program constructs that model graphical primitives and operations akin to those in Scalable
Vector Graphics (SVG) [186]. Many of their shared disadvantages are well summarized in TikZ’s
manual [170]: “steep learning curve, no WYSIWYG, small changes require a long recompilation
time, and the code does not really “show” how things will look like.” Domain-specific tools allow
diagram specifications that are higher-level and specialized to the problem domain to smoothen the
learning curve. They are developed either from scratch (e.g., GraphViz and the DOT language for
graph visualization [49]) or on top of general-purpose tools (e.g., TikZ’s extensions, tkz-euclide
for Euclidean geometry). However, many of them still inherit the other disadvantages from above.

DM tools represent interactive diagramming tools that support WYSIWYG interfaces and
direct interaction with shapes. Akin to PL tools, general-purpose DM tools such as Adobe
Illustrator, Inkscape, and Figma also have similar sets of primitives, but often provide a large
number of widgets or drawing tools (e.g., Illustrator CC has nearly 100 built-in tools2). To
overcome the disadvantage of their highly manual interaction model, both Illustrator and Inkscape
provide language bindings or command-line tools for automation, but they still suffer from the
above problems of PL tools. Popular domain-specific diagramming tools such as draw.io and Gliffy
are template editors that provide predefined, mostly box-and-arrow style shapes, limiting users
to a narrow set of diagrams. Research prototypes such as Sketchpad [167] and ThingLab [22]
automate diagram layout using constraint solving, but many edit actions like selection and
shape construction remain manual. Other prototypes like Apparatus3 and Bret Victor’s dynamic
visualization tool [27] incorporate some limited programmatic operations (e.g., macro recording,
variable declaration, and computed properties) via direct interactions.

As discussed by Satyanarayan et al. [157], data visualization tools have transformed over
the past decade. The major advances are characterized by three “waves”: (1) improvement of
individual charts’ quality, (2) theories and tools that enable mass-production of visualizations,
and (3) the convergence of tools [47]. Whereas the benefits of conceptual diagrams are clear and
theoretical foundations exist, most of the diagramming tools are still not easily scalable and there
are large gaps in existing technologies, notably between PL and DM tools. In other words, the 2nd

wave of conceptual diagramming is still not here. In the interview study presented in Chapter 3,
we aim to gain a deep understanding of people’s diagramming process to drive the design of tools
that fill these gaps.

1http://paperjs.org/
2https://helpx.adobe.com/illustrator/user-guide.html
3http://aprt.us/

8

http://paperjs.org/
https://helpx.adobe.com/illustrator/user-guide.html
http://aprt.us/

2.4 Tools for Problem Generation
In addition to making standalone diagrams, this dissertation also covers diagrammatic problem
authoring with EDGEWORTH in Chapters 5 and 6. In this section, we cover related digital systems
for practice problem generation in general, and their support for diagram authoring. Kurdi et al.
[100] conduct a systematic review of automatic problem generation tools and show that the
majority of tools address language learning. In this section, we focus on problem generation
tools in STEM learning and discuss how they relate to diagrammatic problem generation and
EDGEWORTH.

Intelligent Tutoring Systems (ITS) are automated curricula that include practice problems
with personalized feedback (inner loop) and customize problem selection to improve students’
performance (outer loop) [178]. Problem banks are an important component of ITS tools, so many
systems have built-in authoring support to generate a large number of problems via templating. For
instance, Cognitive Tutor Authoring Tools (CTAT) is an ITS authoring platform [2]. CTAT has a
“Mass Production” feature that lets the user create a problem template and insert problem-specific
values via a spreadsheet [3]. Similarly, the ASSISTment builder allows authors to “variabilize”
numerical values in problem templates for automatic generation [149].

In the context of testing, researchers proposed systems that generate test problems (items)
automatically for adaptive testing and cost-effectiveness [60]. Due to the need for numerous
test items, automatic item generation systems also rely on templating (item models) to generate
items [61, 77, 142]. For instance, IGOR [60, Chapter 13] has a similar approach to templating
as CTAT and ASSISTment. While the templating approach is suitable for symbolic problems,
they do not automate diagram generation. Authors still need to provide individual diagrams in
templates in CTAT, ASSISTment, or IGOR.

In Chapter 5, we present EDGEWORTH, which complements these tools by enabling authors to
automate diagram variation production. Diagrammatic problems generated by EDGEWORTH can
be integrated into problem banks and managed by the outer loop of ITSs for an adaptive learning
experience. EDGEWORTH does not currently support template variables in the textual prompt
or diagram labels. However, it is possible to parameterize the example diagram as a problem
template and use existing template-based systems to generate problem variations.

Other problem generation systems employ different methods from templating. A number of
systems use program synthesis to synthesize a program that produces many problem instances [66].
Singh et al. [164] generate algebraic equality proof problems from example problems. Weitekamp
et al. [182] speed up ITS authoring in CTAT by synthesizing ITS problems from user demonstration
of problem solutions. Andersen et al. [5] model procedures to solve algebra problems as imperative
programs and use execution traces of these programs to generate a series of problems. Notably,
Gulwani et al. [68] generate solutions to geometry drawing problems by synthesizing programs of
ruler-and-compass geometry constructions from a program specification. Though not strictly a
problem generation tool, the generated solutions can be illustrated diagrammatically. However,
the approach in [68] is specific to the domain of geometry, whereas EDGEWORTH’s approach is
domain-agnostic. Synthesis-based systems often have an advantage of a simpler user experience,
since the author can provide examples and the tool automates problem generation itself. The
approach of EDGEWORTH takes inspiration from these tools in that EDGEWORTH only requires
the author to provide one example diagram written in a declarative language (SUBSTANCE, see

9

Chapter 4). However, EDGEWORTH does not need to generate programs from a specification. It
merely performs mutations on an example diagram.

Commonly used in human intelligence tests and as computer vision benchmarks, Figural
Analogy Problems (FAPs) give a series of diagrams and ask the respondent to infer or select the
next diagram given some patterns in the given diagrams [189]. Early automatic FAP generators
were based on human-crafted shape composition rules [79] and cognitive models [50]. Newer
systems [181, 10] encode variation rules [32] as first-order logic constraints. While FAPs are by
definition highly diagrammatic, FAPs focus on pure visual reasoning, while in STEM problems
often focus on mapping symbolic notations to visuals. Moreover, diagrams in STEM are much
more diverse due to the multitude of disciplines, and are not limited by a few variation rules.
That said, EDGEWORTH takes inspiration from FAP generators’ rule-based approach. However,
EDGEWORTH’s mutations are domain-agnostic and operate on logical objects, not fragments of
the diagram itself.

10

Chapter 3

Understanding the Diagramming Process1

Common secret

= =

Secret colours

+ +

(assume
that mixture separation

is expensive)

Public transport

= =

Secret colours

+ +

Common paint

Alice Bob

Figure 3.1: Diagrams explain concepts visually in many domains, e.g.,: (a) Diffie-Hellman key exchange with colors
representing prime multiplication [184]. (b) Linking two views of the Klein 4-group [190]. (c) Unrolling a recurrent
LSTM network [134]. (d) Natural numbers as 2D areas in a visual proof [72].

Chapters 1 and 2 laid the foundation by discussing the importance of diagrams in learning and
problem-solving and reviewing existing tools for diagramming. This chapter aims to investigate
how domain experts create diagrams, examining their methods, the tools they use, and the
difficulties they encounter. This chapter presents an empirical study to highlight the gaps in
current tools and suggest opportunities for developing more intuitive and effective diagramming
solutions that align better with the diagramming processes of experts.

3.1 Introduction

Visual representations of knowledge allow us to understand and disseminate information more
effectively than text alone [116]. This chapter focuses on conceptual diagrams, which communi-
cate conceptual, procedural, and metacognitive knowledge [99] in visual form (Section 2.1). By
giving abstract concepts visual representations, these diagrams help explain concepts to oneself

1This chapter is adapted from “How Domain Experts Create Conceptual Diagrams and Implications for Tool
Design” [113].

11

and communicate them to others. Explaining concepts using visuals is profoundly important for
dissemination of scientific knowledge and for learning.

While conceptual diagramming is clearly an important form of knowledge work, unfortunately,
tools for creating conceptual diagrams are still limited. Current tools for diagramming stand in
tension between: a) General-purpose drawing tools such as Illustrator and Figma that offer simple
pen-and-canvas or box-and-arrow metaphors, but are viscous [64]—users must constantly commit
to exact positions, sizes, and styling of shapes. b) Dedicated diagramming tools such as Lucidchart
and Gliffy that allow rapid changes, but rely heavily on templates, limiting diagrammers to a fixed
set of visual representations.

We argue that this relatively limited support for diagramming in tools is in part because the
process of diagramming is poorly understood. For instance, often diagrammers start with informal
media such as paper or whiteboards, and edit diagrams digitally before they are presented, but how
do diagrammers manage the evolution of diagrams? How do diagrammers utilize the strengths
and cope with the limitations of their tools? Which tools are chosen for what purposes? Such a
detailed understanding of the process can help design interactive tools to support diagramming.

This chapter contributes a description of the process of creating conceptual diagrams, the
difficulties people face while diagramming, and opportunities for tool design. In Section 3.2, we
describe how we conducted interviews with 18 domain experts from a wide variety of disciplines
such as math, computer science, architecture, and education. The findings presented in Section 3.3
reveal that diagrammers have diverse interactions with visual representations in both physical
sketches and digital tools, including finding, creating, storing, and reusing representations. When
diagrammers transition from sketches to digital tools, their tool selections are influenced by their
sense of control over object placement and diagram layout. Participants were concerned with two
kinds of control: local object placement, and global diagram layout. Current tools, both those that
use programming languages (PL) and those that use direct manipulation (DM) as their interactive
metaphor trade-off one kind of control to support the other more effectively. Consequently, we
found that diagrammers invented their own set of ad hoc and personal reuse patterns to iterate,
simplify, and automate the diagramming workflow.

One implication of our results is the opportunity to design tools informed by the processes
of diagramming, and practices that domain experts already use, making digital diagramming
more intuitive and efficient. In Section 3.4, we identify four key opportunities for natural [127]
diagramming tools that allow diagrammers to express their ideas visually the same way they think
about them:

• Exploration support: supporting exploratory behaviors such as undo and backtracking dur-
ing both abstract-level, breath-first exploration of the design space and low-level refinements
of visual details.

• Representation salience: allowing explicit creation and management of visual representa-
tions, i.e., the mappings from domain constructs to shapes instead of geometric primitives
themselves.

• Live engagement: providing diagrammers with the sense of agency by designing for liveness
and directness of the diagramming experience.

• Vocabulary correspondence: enabling diagrammers to interact with their diagrams using
vocabularies that is conventional in their domain.

12

For each of the opportunities, we survey existing techniques from relevant areas to provide
tool designers with technical insights on how it might be implemented.

3.2 Method

3.2.1 Participants and Recruitment

We conducted interviews with 18 participants (13 male, 5 female). Participants were recruited
through posts on social media, and our research group website. We screen participants by their
usage of diagrams in their primary domain of knowledge work, and prioritized for a diversity
of domains and participants’ expertise in their domain. Of all 18 participants interviewed, four
participants were university faculty, 10 were PhD students or postdocs, one was a professional
masters student, one was a K-12 math instructor, one is an independent software developer, and
one is an enterprise software engineer. Prospective participants filled out a survey which allowed
us to screen participants for our interviews. We selected the interviewees based on the following
criteria: the interviewee (1) creates conceptual diagrams on a frequent basis and (2) uses digital
diagramming tools to create these diagrams.

Because we had more potential interviewees than we originally envisioned (64 in all), we
used a saturation method [16] to determine the number of participants. We conducted several
batches of interviews (with 2-3 interviews per batch consisting of diverse participants), and did a
preliminary analysis of the transcripts from each batch. When the analysis stopped revealing new
insights, we stopped interviewing more participants.

3.2.2 Semi-structured Interviews

Interviews lasted between 30 and 80 minutes and were semi-structured. Interviews were con-
ducted either in person (7 participants) or online using Skype (11 participants.) We encouraged
participants to bring any digital and hand-drawn diagrams that they had previously created to
share with us. We also encouraged them to have a pen and paper (or a whiteboard) available to
draw during the interview. Table 3.1 includes all the participants categorized by the primary focus
of their work.

Four of the interviewers are involved in the development of PENROSE (Chapter 4). Our initial
interview questions were developed to inform PENROSE’s design. The focus of the interviews
eventually broadened to participants’ past experience diagramming (using the critical incident
technique [58]), tool preferences, and reuse practices. The full interview protocol can be found
in Appendix A. Example questions from our script include: “What is the last diagram you
made?” and “What is the diagram you are most proud of?” These questions are accompanied by
appropriate follow-up questions and requests for participants to share diagrams under discussion.

13

Domain Participant
Abstract algebra P1, P17
Algorithms P12
Architecture P8
Category theory P4
Computer graphics P16, P6, P10, P3
Discrete mathematics P14
Human-computer interaction P13, P18
K-12 education P15
Programming language theory P11
Software engineering P9, P2
Topology P7
User interface design P5

Table 3.1: Interview participants’ primary domains.

3.2.3 Analysis

Interviews were video recorded and transcribed using either human or machine transcription. We2

then manually validated and corrected any transcription errors.
We employed thematic analysis methods [26] to analyze interview transcripts. The first two

authors began by conducting an open coding session and discussed initial insights for every batch
of interviews. Then, following all interviews, the authors discussed the codes and created a coding
guide with operationalized definitions of codes (see Appendix B). Using the agreed coding guide,
one of the authors did a second phase of coding. While conducting the second coding phase, the
author also summarized the transcripts using sticky notes containing highlights of the interview
sessions. All authors then reviewed both the codebook with the sticky notes to further refine the
set of codes.

Finally, the authors analyzed the codes by clustering lower-level codes during multiple
interactive discussion sessions. Through the higher-level clusters, a few themes with high numbers
of codes emerged, such as Reuse and Representation. We present these themes and the resulting
insights next.

3.3 Results

In this section, we present the results from our analysis of the interview data. The section is
organized in terms of the high-level themes that emerged from our analysis.

2The first two authors of “How Domain Experts Create Conceptual Diagrams and Implications for Tool De-
sign”[113]

14

Figure 3.2: Consider a truck moving rightward (a, adopted from [103]) on the ground, and visualize the forces that
are exerted to cart B. A good visual representation (b) of forces on cart B is easily understandable, where the dot
represents the cart and the arrows represent the forces exerted on it. On the other hand, (c) loses essential information
and (d) is non-standard and harder to understand.

3.3.1 Representation finding

When illustrating a concept visually, a crucial step is to decide how every abstract object will be
represented graphically. For example, Larkin and Simon [103] chose to represent forces with
arrows in the diagram shown in Figure 3.2b [103]. Figure 3.2b is a free body diagram common
in physics for representing external forces acting on an isolated object to analyze its motion or
equilibrium. Figure 3.2 reduces the mass of the cart to a point, and visualize the forces exerted on
the cart as arrows in opposite directions and different magnitudes. Figure 3.2c and Figure 3.2d, on
the other hand, are not good visual representations of the same forces. Figure 3.2c only encodes
the magnitudes but not the directions of the forces. Figure 3.2d visualizes forces as chocolate bars,
which are nonstandard in physics and can be distracting to the readers.

This step of determining a good visual representation, which we call representation finding, is
crucial to diagram effectiveness. If Larkin and Simon had represented forces using concentric
circles with different radii instead of arrows (Figure 3.2c), the directionality of the forces would
be lost. If they had represented forces with chocolate bars with different lengths (Figure 3.2d),
the diagram would have been inconsistent with other physics diagrams and the extraneous detail
would have distracted from the core purpose.

This process of representation finding usually preceded the creation of any formal or informal
diagrams. Participants engaged in two representation finding activities: (1) seeking and finding
existing representations from prior work and (2) creating novel representations.

3.3.1.1 Diagrammers seek existing representations from prior work

In many domains, there are well-established visual representations for abstract concepts and
objects. Therefore, diagrammers tended to look at existing diagrams for representations when
starting to create their representations:

“Sometimes I look for inspiration in other papers just to know what kinds of standard people
are using. Sometimes there are some conventions that people actually use in my field like how

15

to represent a camera for instance. So you kind of have to stick with these conventions.” (P3)

3.3.1.2 Diagrammers generate new representations to tell new stories

Other domains lack standardized representations and diagrammers creatively generate their own
representations:

“The whole purpose of those diagrams [in my book] is to make something that has never
been seen before visually obvious... Why didn’t anybody draw that picture before? I have been
taking something that almost seems completely confusing or unimportant and having a picture
that makes you know what’s going on... is truly satisfying.” (P1)
When creating diagrams for explanatory purposes, diagrammers also carefully craft visual

representations to ensure that the diagram is intuitive and clear for their target audience. For
instance, P8 developed new representations to reduce visual complexity:

“When a diagram has too many working elements, it becomes too hard for your brain to
process it. If you can boil it down to two main things interacting, that will make the diagram
much more intuitive to someone. It’s very much about choosing the right colors, lines... putting
the emphasis in the right place.” (P8)

3.3.1.3 Diagrammers use sketches to discover appropriate representations

Sketching plays an important role in generating new visual representations or choosing among
existing ones. For instance, P8, P12, P5, P9, and P13 reported iterative processes of refining their
visual representations as they sketch. For instance, P9 described the evolution of diagram sketches
and the changes of visual representations of the design of a complex camera-supporter-projector
system, also shown in Figure 3.3:

“At this stage, I don’t even know how these machines would be connected, so there’s lines,
but at this later stage I was actually thinking about ‘Oh, how are we going to represent these
things and compute with them in practice?’ So I did arrows. There’s also certainly increased
complexity in the beginning thing, I’m just looking at the situation of a single camera projectors
supporters system. Then here on the next page I’m starting to look at different configurations of
multiple cameras and projectors.” (P9)

3.3.2 Choosing the right tools
When participants eventually chose to move to a digital medium, their choice of tool was system-
atic, if not conscious. Specifically, we found participants’ preferred either programming-language
based (PL) tools or direct-manipulation based (DM) ones. Below, we analyze the reasons for their
preferences.

3.3.2.1 Diagrammers choose DM tools for faster feedback and global control

DM tools were often described as “easier” and thus have lower barriers to entry when compared
with PL tools. One particularly common reason for choosing DM tools was the need to place
shapes in relations with other shapes, which is difficult to do without immediate visual feedback.

16

Figure 3.3: P9 made sketches to explain projector and camera calibration. The complexity of these sketches increased
and visual representations evolve over time. Left: an initial sketch represents connectivity as line segments. Right: a
later sketch represent connectivity as arrows.

“So I like [a DM tool] because it gives me this very fine control over how things are aligned
and when they’re straight up and down.” (P2)
Because of the synchronized visual preview, DM tools provide better support for global

control over diagram layout, i.e., the relationships among graphical primitives. Diagrammers used
DM tools similar to how they used pen and paper, to offload their working memory [103], but
with the additional benefits provided by interactions supported by the tools:

“I’m trying to draw things down on the papers [or DM tools] because my head is getting
crowded and I need to be able to keep track of everything on [digital] paper and be able to
interact with it the same way I would in my head.” (P7)

3.3.2.2 Diagrammers choose programming languages for better abstraction and local
control

Comparing to the easy global control provided by DM tools, PL tools make local control easier:
they let users control local placements of shapes by specifying exact pixel coordinates:

“I want this [a shape] to be exactly a hundred pixels... because there’s definitely times
where I want to get this right to this point and it’s hard to do that with the mouse.” (P15)
Global layout of diagrams can be specified more precisely using PL tools, but requires more

advanced programming skills and, as discussed, more time commitment:
“If it’s something where the relationships among the things you want to specify in a precise

way, then it’s a lot easier, if you know how to program, to introduce a programming language
where you can specify exactly the relationships you want, how you want them to change, and so
forth.” (P1)

Programming languages provide affordances to create abstractions and automate the diagram-
ming process:

“Once you have made a visualization [using PL tools], if you want to tweak things about it,
you can. Just put what you do into a script, add some parameters, and you could repeatedly get

17

the same visualization with variations... It will generate the thing automatically, you don’t have
to create a whole picture by hand again.” (P1)
The complexity of languages, however, incurs a higher upfront cost and steep learning

curve, making more diagrammers without programming background reluctant to commit to them.
Another downside of PL tools is that they often require compile-and-run cycles and hence delayed
feedback:

“There’s a long learning curve on [a PL tool] and then it’s slow. It’s a lot of typing and
a lot of iterative–‘I type something and I see what it looks like’. So there’s a lot of delays in
modifying [the diagram].” (P15)

“I’m willing to put in the effort, but it’s like 20% of the time is that, and like 80% of the
time is fighting with LATEX.” (P11)

3.3.2.3 Advanced diagrammers use PL tools to automate their diagramming workflows

In some cases, diagrammers find the need to create families of similar diagrams for the use of, for
instance, writing a textbook or a problem set. Three interviewees automated their diagramming
workflow extensively by leveraging the abstraction affordances of PL tools. One automation
pattern is to parameterize complex diagrams and generate multiple instances with variations to
explore design alternatives and populate diagram collections:

“If I invest the time upfront to just write it, parameterized by, and then I do the diagram in
terms of n and k. And then later I realize that, ‘Aw, n = 15 and k = 4 is just a mess!’ Okay, I
go to the top of the file and I set n = 12 and k = 3 and I re-render it and it looks like this, and
I go, ‘That’s what I want.’ If I’m not sure, okay, let’s try n = 10, try that. You can just make a
new diagram in 15 seconds instead of four hours, but they also demand more time and skills up
front. If I’m just going to do one diagram, it’s not worth it.” (P1)

Another pattern is creating ad hoc, embedded domain-specific languages that allow specifica-
tion of diagrams at a higher level:

“I have learned a style that is highly idiomatic and not something that I could teach someone
else... you look at the sort of syntactic objects that you’re going to work with in a certain proof
theory, and you define the macros at the top level.” (P11)

As commented by P1 and P11 above, the automation requires a high upfront cost and advanced
skill sets, and only advanced diagrammers invested in the skills and time commitment to do so.

3.3.3 Reusing elements from earlier diagrams
3.3.3.1 Diagrammers backtrack frequently and informally track prior versions

Diagrammers were iterative even in the formal diagramming stage, which involves frequent
backtracking behaviors. Therefore, keeping track of version history becomes an essential task for
diagrammers.

In the case of DM tools, however, versioning can be challenging in many existing tools,
due to the lack of textual storage formats. As a result, ad hoc solutions are again created to
compensate for this limitation such as keeping multiple versions of the diagram on the same
canvas, as illustrated in Figure 3.4 and described by P5:

18

Figure 3.4: P13 manually tracks versions of a diagram in Illustrator using multiple canvases.

“I ... duplicate each [art board], change something about that, and take it out again. That’s
really helpful not only to present the overall trajectory of the process, but then you can go back
and reference a previous state without having to look through the undo history and destroy all
of your redos. I [like to] branch out fractally with different areas that are relevant to me.” (P5)
In theory, standard version control systems such as git [173] make it easy to track versions

with PL tools. However, even with their textual file formats, versioning can still be challenging for
PL tools because textual representations of diagrams can be too low-level to be human readable.
As a result, P6 tracks prior versions without using standard version control systems:

“I rely either on Dropbox to store different images or I have my own custom-made back-up
system that keeps hard copies of things... I have a separate script that every day pulls all of my
folders and keeps copies of them if there is any change.” (P6)

3.3.3.2 Diagrammers organize reuse libraries by representation

The most common form of library we saw diagrammers maintain was a “cheat sheet,” an example
of which shown in Figure 3.5. Cheat sheets are configuration files that contain low-level parameters
such as line-weight settings and hexadecimal strings of colors (P3, P6, P13). Diagrammers used
cheat sheets to reduce stylistic inconsistencies and to simplify the repetitive, manual tasks in the
diagramming process with cheat sheets. For instance, one participant said:

“Usually I have this little txt file where I basically remember the color so I have the color
codes for primary and secondary [objects]... I saved the [line] width as well for primary
secondary [objects], and that’s kind of like my cheat sheet that I reuse.” (P3)

This is one area where tool support was mostly lacking. For instance, participants often took
notes manually (sometimes these notes were handwritten.)

More advanced diagrammers maintained collections of existing diagrams or diagram compo-
nents, organized by representation. For instance, one participant keeps a document of previous

19

=== COLORS ===
* Orange
Base: #f7883c
Dark: #000 @ 15% (overlay)
Darker: #000 @ 30% (overlay)
Light: #fff @ 20% (overlay)
Lighter: #fff @ 40% (overlay)
=== STROKES ===
Main (silhouette only): #000 2pt thickness (solid)
Secondary: #000 1pt thickness (solid)
Tertiary: #000 @ 50% (overlay) 1pt thickness
Behind: #000 @ 1pt thickness (dashed: 6pt dash, 7pt gap,
 round cap, align to corners)
=== FONT ===
Base: Linux Libertine (add with TikZ directly in TeX)
Size: 11pt

r p

Figure 3.5: P3 uses a cheat sheet to track frequently used style attributes.

visualizations, as shown in Figure 3.6:
“I keep a document, that is almost all the TikZ diagrams I’ve ever had because I find that

they helped me think about how to represent diagrams for new situations.” (P7)
Another participant collects commonly used diagram components in a personal library:

“So over the time I’ve settled on specific representations for the camera and the light source,
I keep copies of them. I have my own small library of things.” (P6)

3.4 Implications: Natural Diagramming
The results discussed above suggest unique strengths and weaknesses of existing PL and DM
diagramming tools. This section offers some possibilities to combine the strengths of PL and DM
tools and create more intuitive and efficient next-generation tools. Just as previous work advocated
for creating programming tools “for people to express their ideas in the same way they think about
them” [127] as an opportunity for natural programming, we advocate for creating diagramming
tools for natural diagramming. Natural diagramming presents four distinct opportunities to
leverage the strengths while alleviating the weaknesses of existing tools:

• Representation Salience emphasizes the importance of treating visual representations as
first-class entities, enabling diagrammers to manipulate and reuse them effectively.

• Exploration Support helps users ideate and refine diagrams, moving fluidly between
high-level design choices and detailed refinements.

• Live Engagement bridges the gap between direct manipulation and abstraction, providing
immediate visual feedback and enhancing user control.

• Vocabulary Correspondence allows diagramming tools to align closely with users’ mental

20

For any thrackle we can create a graph where the vertices represent the
convex sets and there is an edge between the vertices if the two convex sets
intersect. For example:

Figure 1: A thrackle and its reverse graph color indicated W points

since ever convex set must intersect exactly once the ending reverse graph
will be the complete graph on m vertices, Km.

The intersection of convex sets is a symmetric relation and so any W point
will be a sub-complete graph. Therefore the decomposition of the complete
graph into sub-graphs is the number of W points which has to be larger than
than m.

Figure 2: Examples of tight thrackles for Conjecture 0.1

x1

�6 �4 �2 0 2 4 6

A B A

A B A B

a
1

23

4

56

M

F V

D

a1
a2
a3

p1 p2

5

4

7

8

3

5

a1

a2a3

p1 p2

p1

p2p3

2 2

2

q1

q2q3

1

11

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

6

6

n volFG((4,3,2,1),n)(1) Graph Partition

5 107520 1 2 3 4 5 6

1

1

2

2

3

3

4

4

5

5

6 26580 1 2 3 4 5 6 7

1

1

2

2

3

3

4

4

5

5

6

6

7 15120 1 2 3 4 5 6 7 8

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8 12600 1 2 3 4 5 6 7 8 9

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9 12600 1 2 3 4 5 6 7 8 9 10

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10 12600 1 2 3 4 5 6 7 8 9 10 11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

p
u

Figure 3.6: P7 organizes all previously made TikZ diagrams in a single document.

models and domain-specific design vocabulary.

We end the description of each of these natural diagramming opportunities by highlighting
existing techniques that may be further developed to achieve it.

3.4.1 Exploration Support

Exploration pervades the diagramming process for making conceptual diagrams, from choosing
representation to determining stylistic details. We characterize two types of exploratory activities
by adopting terms from Goel [63]: (a) Lateral transformations involve ideation and exploration at
the high-level to broaden the design space, e.g., finding the appropriate visual representation for
forces in Figure 3.2. (b) Vertical transformations are more detailed refinements to a pre-determined
visual representation, such as deciding the arrowhead style in Figure 3.2b.

Sketching is an important part of the design process [29]. Our participants produced physical
sketches to explore design alternatives before transitioning to digital tools, which are perceived
as a medium of higher commitment. They performed this type of exploration by looking at
prior work and multiple alternatives laterally. Early informal sketches naturally affords lateral
transformations [63].

Diagrammers also attempt to leverage precision, automation, and abstraction afforded by
digital tools. After the visual representation stabilizes, they move to digital tools and refine this
determinate representation, i.e. vertically refine their design. Unfortunately, existing tools do not
provide sufficient flexibility to support even small vertical changes. Whereas DM tools require
significant manual efforts to propagate local changes, PL tools require a high upfront cost to
create abstractions that reduce future repetition. As a result, our participants described various ad
hoc workarounds to perform common activities for exploration such as backtracking, versioning,
and reuse in both PL and DM tools.

In essence, a gap exists between drafting and crafting, a design dilemma that has plagued other
sketching tools (such as digital pens) [153]. Solving this dilemma requires tools that continuously
support diagrammers to explore lateral and vertical changes, allowing more fluidity to make, track,
and revert changes.

21

One solution to the problem of exploration and change management can be seen in tools
for exploratory programming. Exploratory Programming (EP) characterizes a practice of ex-
perimenting and prototyping adopted by programmers across a wide range of domains [161,
93]. Data scientists reuse and iterate on small snippets of scripts to analyze data exploratively.
VARIOLITE [92] support local versioning with “variant boxes” around regions of code. Software
engineers often backtrack by manually deleting or re-typing code when developing software [192].
Selective undo techniques allow complex backtracking in code editing [193], which was also
shown to be effective for painting applications [128].

Some systems also show opportunities for automatic vertical refinement. For instance, to
support the transition from freehand sketches to final UI implementation, SILK recognizes hand-
drawn shapes and translates them to real UI components [102]. DREAMSKETCH generates 3D
models from sketches [89]. Sketches for conceptual diagrams, however, can often be intentionally
ambiguous and unstructured, making recognition, beautification, and generation of reusable
diagram components challenging [168].

Finally, in addition to better support for history management, another approach may be to
reduce unnecessary changes through improved abstractions. Program synthesis can be used to
generate reusable functions from examples of lower-level interactions with a potentially non-
programmatic interface [69]. SKETCH-N-SKETCH is a vector drawing tool with synchronized
code and graphical views of the same drawing [75]. It synthesizes reusable functions from direct
manipulation of objects in the graphical view and thereby enables users to avoid repetition. Ellis
et al. [48] synthesize imperative programs from hand-drawn sketches. Currently, synthesizing
high-level abstractions and surfacing them in a non-obstructive, meaningful manner are still open
problems for future conceptual diagramming tools.

3.4.2 Representation Salience
Constructing and interpreting representations are crucial skills for learning new concepts and
developing domain expertise [1]. Many of our participants track prior representations, curate
reuse libraries, search for ones created by others, and inventively create new ones in their
representation finding phase. This suggests an opportunity for natural diagramming tools that
support representation salience, treating visual representations as first-class entities and providing
operations to easily interact with them.

Bret Victor uses the analogy of climbing “up” (abstraction) and “down” (concretization) the
ladder of abstraction to characterize the process of understanding complex systems using visual
representations [179]. Abstraction and parametrization of diagrams allows fast generation of
families of similar diagrams, which can be used in multiple places or serve as a set of design
alternatives. In existing tools without easy access to abstraction constructs, generating design
alternatives can be a time-consuming manual process. Our participants use existing abstraction
constructs such as macros and functions to encode representations, but they tend to be highly
personalized and brittle solutions. As a result, these custom abstractions are rarely scalable or
composable, as one frequent TikZ user said “macros are terrible, [I make macros that are] 20
or 30 braces deep... it’s just hard to write and edit.” (P11) In addition, these poor abstractions
still require significant time investment and force diagrammers to concretize concepts manually.
Consequently, diagrammers’ representational encodings are scattered in manually curated personal

22

libraries, online examples, and cheatsheets of lower-level elements.
For visual representation to be salient, both the underlying structures and mappings to visual

elements need to be encoded in the diagramming system explicitly. Further, these encodings
must be specified with manageable, scalable, and composable abstraction constructs that allow
diagrammers to move “up” and “down” the ladder of abstraction easily.

The management of visual representations at different levels of abstraction can be seen in
many fields. For instance, Gross [65] tackles the problem of the fixed low-level representations
of computer-aided design (CAD) tool by supporting gradual transition from sketches to more
structured diagrams and suggesting concrete representations given early conceptual sketches. Data
visualization tools such as Dashiki [120] and Draco [124] can manage of multiple representations
of the underlying data.

The lack of representation salience often manifest in highly viscous diagramming tools that
operate on low-level primitives and lose deeper semantics of graphical components. To solve this
problem in data visualization, the grammar of graphics [185] formalizes a rich set of operations
to transform data into visual components. For mathematical diagrams, PENROSE (Chapter 4)
includes two domain-specific languages that decouple visual representations from declaration
of abstract objects and encode visual representations by pattern-matching on the objects and
declaring visual elements. Apart from these domain-specific solutions above, however, conceptual
diagramming tools still lack a general and accessible approach to specify problem domains and
the visual representations thereof.

3.4.3 Live Engagement
Hutchins et al. [83] introduce direct engagement, “the qualitative feeling that one is directly
engaged with control of the objects,” as an important criterion for effective interfaces. Our results
show that direct engagement for diagramming can be perceived differently depending on the kinds
of interfaces and the sense of control they afford, i.e., the sense of agency over essential operations
in conceptual diagramming [110]. DM tool design affords continuous representations of objects
and immediate visibility of incremental changes [163]. As a result, they naturally afford a sense
of global control over the global rearrangement of diagram layout. Yet, local control over precise
specification of visual properties and creation of high-level abstractions is still challenging in
direct-manipulation tools. On the other hand, while these same operations are directly supported
in PL tools, our participants reported frustration with their high latency and long compile-and-run
cycles. Our results suggest immediate visual feedback (or liveness [169]) is also essential for
abstract operations. In other words, the sense of control and direct engagement is diffused among
DM and PL tools.

Traditional direct manipulation interfaces can be augmented by novel interaction and pro-
gramming techniques such as programmatic brushes [85], programming by example [67] and
programming by manipulation [80]. Bidirectional programming [37] proposes to combine direct
manipulation and textual programming by surfacing both direct manipulation and text-based
interfaces and synchronizes and synchronizing changes in both directions: (i) from the program
text to the output (liveness) and (ii) from the output to the program text (direct engagement).
These techniques, although currently limited to narrower domains, provide promising directions
towards bridging the gap between PL and DM tools.

23

There have been also significant advances in programming languages to support liveness. Live
programming techniques can provide responsive and continuous feedback on program changes.
The methodology has been increasingly adopted in computer science education, web development,
and traditional programming environments [118, 81, 151]. Tanimoto [169] proposes four levels
of liveness with the top level featuring “stream-driven updates” and “informative, significant,
responsive and live” visual representations of programs’ dynamic behaviors. Techniques such as
incremental compilation and type inference [119] and typed holes [135] allow fast compilation
and facilitate liveness of programming environments. However, many live programming systems
only offer one-way updates from the program to its output visual representation, inhibiting the
opportunities for direct interactions with the visuals.

3.4.4 Vocabulary Correspondence
Conceptual diagrams are made of “abstract and topological” [54] shapes that are mapped from
domain objects in the content model [152]. In Figure 3.2b, the concept of two counteracting forces
(domain objects) is mapped to two arrows, but the exact styling and lengths of the arrows do not
change the meaning of the diagram. As a result, users’ vocabularies for conceptual diagramming
are often abstract, topological, and domain-specific. Therefore, there is an opportunity for natural
diagramming tools that support vocabulary correspondence by having a grammar or an interface
that directly maps to users’ vocabulary for diagramming.

As shown in our results, diagrammers define new abstractions to both automate and natu-
ralize their diagramming process. More advanced diagrammers create abstractions to quickly
generate new diagram instances and fit their mental models, but, even for advanced diagrammers,
abstractions are brittle and often not share-able, due to the lack of tool support. In addition, many
participants described diagrams in terms of relative, high-level relationships such as “smaller”/“big-
ger” and “overlaping”/“non-overlapping”. But the tools they use tend to operate on absolute units
and do not provide support for specifying such relationships. One participant shared a vision of
an ideal tool:

“The best tool... would have fairly high level primitives. I might say ‘Okay, I want it to be
symmetric in this way. I want this thing always to be attached to that.’ I want to be able to
define my own higher level primitives.” (P2)
In other words, large semantic and articulatory distances [83] still exist between interaction

metaphors and diagrammers’ vocabulary, creating an opportunity improve the closeness of
mapping [64] while maintaining users’ control and the expressiveness of diagramming tools.

One opportunity to do so is allow users to introduce their own vocabulary to the tool, for
instance, through domain-specific languages (DSL). DSLs provide focused expressive power
within specific problem domains at the cost of generality [177]. For instance, domain-specific
diagramming systems such as GraphViz allow succinct, high-level specification of diagrams and
leverage domain knowledge to solve for diagram layouts algorithmically [49]. So far, DSLs have
been most useful areas such as graph visualization, but they may prove to be useful elsewhere
too. To allow end-users to introduce their own DSLs, language workbenches may be a viable
implementation route. These workbenches allow efficient definition, reuse, and composition of
DSLs [51], but much work remains, as existing language workbenches such as MPS [180] are
still complex to learn for end-users like many of our participants.

24

Another way to model abstract and topological relationships is using high-level constraints,
an idea that has existed since the invention of SketchPad [167]. Constraint-based systems are
extensively used in Computer-Aided Design (CAD) tools [166]. CAD users commonly use con-
straints in parametric drawing, exploring different configurations of complex shapes. Automatic
formatting of documents, digital drawings, and web pages are often modeled as constraints and
can be optimized by solvers [82, 136]. To further simplify the process of constraint specification,
some systems allow visual interactions with constraints [80, 62] while others intelligently infer
constraints by examples [101]. By offloading the burden of low-level specification to constraint
solvers, diagrammers often lose control of diagram elements, which poses usability challenges to
future diagramming tools.

3.5 Summary
Conceptual diagrams are essential for understanding concepts, communicating ideas, and improv-
ing instructions effectively in many fields. This chapter provides the first empirical study of how
domain experts create conceptual diagrams.

Our results demonstrate representation finding as a vital step in the diagramming process and
the role that sketches play in this step. However, due to limitations of current tools, notably the
trade-offs between direct manipulation tools and programming languages, reusing representations
is still challenging. As a result, diagrammers creatively circumvent these limitations by employing
a set of ad hoc techniques to reuse diagram components and to scale up diagram production.

Based on our results, we introduce the concept of natural diagramming and four opportunities
for natural diagramming support: exploration support, representation salience, live engagement,
and vocabulary correspondence. For each of them, we discussed how recent advances from
various research communities can help improve existing tools and design future tools.

Natural diagramming embodies our vision for future diagramming tools—tools that seamlessly
and naturally translate diagrammers’ high-level ideas to beautiful and illustrative diagrams. This
chapter articulates a concrete vision for systems designers to create more effective diagramming
tools. In subsequent chapters, we present PENROSE (Chapter 4) and EDGEWORTH (Chapters 5
and 6), two tools designed with this vision in mind.

25

26

Chapter 4

PENROSE: From Notations to Beautiful
Diagrams1

Point p, q, r, s
Segment a := {p, q}
Segment b := {p, r}
Point m := Midpoint(a)
Angle theta := ∠(q, p, r)
Triangle t := {p, r, s}
Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

Style — Euclidean Style — spherical Style — hyperbolic

Figure 4.1: PENROSE is a framework for specifying how mathematical statements should be interpreted as visual
diagrams. A clean separation between abstract mathematical objects and their visual representation provides new
capabilities beyond existing code- or GUI-based tools. Here, for instance, the same set of statements (left) is given
three different visual interpretations (right), via Euclidean, spherical, and hyperbolic geometry.

Informed by the results from the interview study (Chapter 3), we developed PENROSE, a
language-based diagramming platform [191]. The core PENROSE system addresses represen-
tation salience: it has first-class support for creating and reusing visual representations. To
accomplish this, PENROSE decomposes the concerns of diagramming into two domain-specific
languages (DSLs) with distinct purposes: SUBSTANCE contains the mathematical content of the
diagram. STYLE explicitly specifies mappings from abstract objects to visual icons. In contrast to
tools that specify diagrams via direct manipulation or low-level graphics programming, PENROSE

enables creation and exploration of diagrams that faithfully preserve the underlying meaning.
Sections 4.1 and 4.2 explain the overall design goals; Sections 4.3 and 4.4 detail PENROSE’s
language design and automatic layout engine that powers its runtime. Section 4.5 demonstrates
the effectiveness and generality of the system by showing how it can be used to illustrate a diverse
set of concepts from mathematics and computer graphics.

1This chapter is adapted from “Penrose: From Mathematical Notation to Beautiful Diagrams” [191].

27

4.1 Introduction

A central goal of PENROSE is to lower the barrier to turning ideas into effective, high-quality
visual diagrams. In the same way that TEX and LATEX have democratized mathematical writing by
algorithmically codifying best practices of professional typesetters [13], PENROSE aims to codify
best practices of illustrators into a format that is reusable and broadly accessible.

Our approach is rooted in the natural separation in mathematics between abstract definitions
and concrete representations. In particular, the PENROSE system is centered around the specifica-
tion of a mapping from abstract objects to visual icons (Section 4.2). Such mappings are expressed
via domain-specific languages (DSLs) that reflect familiar mathematical notation and can be
applied to obtain new capabilities that are difficult to achieve using existing tools (Section 2.3). A
key distinction is that PENROSE programs encode a family of possible visualizations, rather than
one specific diagram. Hence, effort put into styling a diagram can be reused and generalized. This
approach has several broad-reaching benefits:

• Accessibility. Novice users can generate diagrams by simply typing mathematical state-
ments in familiar notation, leveraging the efforts of more expert package developers.

• Separation of content and presentation. The ability to easily swap out different visual
representations helps deepen understanding by illustrating the same concepts from many
different visual perspectives.

• Evolution of collections. Existing collections of diagrams can easily be improved and
modified to meet the needs of a target platform, e.g., desktop vs. mobile, different printing
processes, or different language localizations.

• Large-scale generation. It becomes easy to generate large collections of illustrations to
explore an idea, or to accompany, say, randomly-generated homework exercises.

Beyond describing the implementation of PENROSE, the purpose of this chapter is to explore
the general challenge of designing systems for diagram generation. We hence start with a
discussion of goals and trade-offs that inform our system design (Section 4.2). Readers may
also find it helpful to periodically refer to the more detailed but purely descriptive account of the
system given in Section 4.3 and Section 4.4.

4.2 System Design

Our aim is to build a system for converting abstract ideas into visual diagrams. Choices about
system design are guided by several specific goals, many of which are supported by interviews
presented in Chapter 3:

1. Abstract objects should be expressed in a familiar way.

2. The system should not be limited to a fixed set of domains.

3. It should be possible to apply many different visualizations to the same content.

4. There should be no inherent limit to visual sophistication.

5. It should be fast enough to facilitate an iterative workflow.

28

Figure 4.2: High-level pipeline: a com-
piler translates mathematical statements
and a chosen visual representation into a
constrained optimization problem. This
problem is then solved numerically to
produce one or more diagrams.

numerical
solver

compiler optimization
problem

diagrams

source code

Substance
mathematical
contentDomain

language
definition Style

visual
representation

(interchangeable)
.STY .STY

.DSL

.STY

.SUB

6. Effort spent on diagramming should be generalizable and reusable.
To achieve these goals, we take inspiration from the way diagrams are often drawn by hand.

In many domains of mathematics, each type of object is informally associated with a standard
visual icon. For instance, points are small dots, vectors are little arrows, etc. To produce a diagram,
symbols are systematically translated into icons; a diagrammer then works to arrange these icons
on the page in a coherent way. We formalize this process so that diagrams can be generated
computationally, rather than by hand. Specifically,

The two organizing principles of PENROSE are:
(i) to specify diagrams via a mapping from abstract objects to visual icons, and

(ii) to synthesize diagrams by solving an associated constrained optimization problem.

Just as the occupant of Searle’s “Chinese room”—who, without understanding Chinese,
follows instructions to manipulate symbols and appear as if they understand the language— does
not actually understand a foreign language [40], a system designed this way need not perform
deep reasoning about mathematics. It simply does a translation. We hence do not expect our
system to solve all challenges of diagramming. Users are still responsible for, say,

• choosing meaningful notation for a domain,
• inventing a useful visual representation of that domain, and
• ensuring that diagrams correctly communicate meaning.

Set A, B
Point p
A ⊂ B
p ∈ A
p /∈ B

Figure 4.3: An optimization-based approach
has myriad benefits. Here a logically inconsis-
tent program fails gracefully, providing visual
intuition for why the given statements cannot
hold.

Likewise, a system cannot be expected to solve hard
computational or mathematical problems (e.g., the halt-
ing problem or Fermat’s last theorem) in order to con-
struct diagrams. Yet despite this shallow level of rea-
soning, PENROSE is able to generate quite sophisticated
diagrams. In fact, even in the absence of such reasoning,
naïve visualization often provides useful observations
(Figure 4.3).

The resulting system effectively models diagram
generation as a compilation process, where the compila-
tion target is a constrained optimization problem rather
than (say) a binary executable or a static image. Once
compiled, this problem can be used and reused to generate visual diagrams; Figure 4.2 illustrates
the high-level system flow. From a programming language point of view, a mapping expressed
in this framework defines an executable visual semantics. That is, it gives a specific, visual, and

29

Figure 4.4: By specifying dia-
grams in terms of abstract relation-
ships rather than explicit graphical
directives, they are easily adapted
to a wide variety of use cases. Here
we use identical PENROSE code
to generate ray tracing diagrams
for several targets (Section 4.5.6).
The STYLE program for this do-
main makes use of a plugin that
expands the regular expression for
light paths based on the canvas
size, i.e., small canvases get fewer
bounces in the light path. Though
the arrangement and number of ob-
jects changes in each example, the
meaning remains the same.

PathType t
HasForm(t,"L(D|S)S*E")
Path p := Sample(t)

computable interpretation to what were previously just abstract logical relationships.

4.2.1 Language-Based Specification

A major decision in PENROSE is to use programming languages to specify both abstract objects
and their visual representation. Graphical (e.g., sketch-based) specification would demand that
users already know how to visualize abstract ideas, and it ties abstract content to one specific
visual representation, which conflicts with Goal 3. A language-based specification provides the
level of abstraction needed to separate content from visualization. This technique supports Goal
1, since language is the most common means by which ideas are expressed. From a system
design point of view, a language-based encoding provides a unified representation for identifying
and transforming abstract objects throughout the pipeline. Moreover, a language-based interface
makes it easy for PENROSE to provide a platform on which other diagramming tools can be built
(as in Section 4.4.5 or Section 4.5.7). One trade-off is that a language-based approach requires
users to express themselves in formal mathematical or computational language, making it more
difficult for (say) visual artists and designers to contribute new representations.

A secondary decision is to split specification of abstract content and visualization across two
domain-specific languages: SUBSTANCE and STYLE. A good analogy is the relationship between

Figure 4.5: Most PENROSE users need
only use the SUBSTANCE language,
but can benefit from packages written
by more expert DOMAIN and STYLE
programmers. This is similar to the
TEXecosystem, where most users only
write documents, but benefit from expert-
authored packages. Substance

(typical users)
Domain/Style

(package developers)

30

Figure 4.6: One benefit of a unified
framework is that different domains are
easily combined. Here, two existing
packages (for meshes and set theory)
were combined to illustrate that a simpli-
cial complex (left) is closed with respect
to taking subsets (right).

HTML [17], which specifies content, and CSS [109], which describes how it is rendered. A
schema called DOMAIN (analogous to XML or JSON schemas) defines the domain of interest,
supporting Goal 2. A detailed walkthrough of an example trio of DOMAIN, SUBSTANCE, and
STYLE is included in Appendix C. In line with Goal 3, this division allows the same styles to be
reused for different content, and likewise, the same content to be displayed in many different styles.
Our goal is for this division to support an ecosystem where novice users can benefit from packages
written by more experienced developers (Figure 4.5). Finally, as in mathematics, the ability to
adopt user-defined, domain-specific notation (Section 4.2.1.1) enables efficient expression of
complex relationships in a way that is both concise and easy to understand [98]. Encoding ideas
directly in the idiom of a problem domain often results in better program comprehension than
(say) a sequence of library calls in a general-purpose language [177]. We discuss the scope and
limitations of our languages in Section 4.8.

4.2.1.1 Diagramming Domain (DOMAIN)

One of our primary goals (Goal 2) is to build a unified system for diagramming, rather than to
focus on specific domains (as in, say, GraphViz [49] or GroupExplorer [33]). A unified design
enables objects from different domains to coexist in the same diagram, often by doing little more
than concatenating source files (Figure 4.6). Moreover, effort put into (say) improving system
performance or rendering quality is amortized across many different domains.

Users can work in any area of mathematics by writing so-called DOMAIN schemas (Sec-
tion 4.3.1) that define DSLs tailored to a given domain. This design also empowers users to adopt
their own notation and conventions for modeling the domain. Use of domain- and user-specific
notation reflects common practice in mathematical writing, where the meaning of a symbol is
frequently overloaded depending on context. Importantly, a DOMAIN schema is purely abstract:
it does not define an internal representation for objects, nor does it give definitions to functions
or predicates. This level of abstraction is crucial for Goal 3, since it allows multiple visual
representations to later be applied to objects from the same domain.

31

For any vector space X , let
u, v ∈ X be orthogonal
vectors of equal length, and
let w = u+ v. Then u and
w make a 45◦ angle.

VectorSpace X
Vector u, v ∈ X
Orthogonal(u, v)
EqualLength(u, v)
Vector w ∈ X
w := u + v

Figure 4.7: Extensibility enables users to adopt conventions and notation (center) that reflect the way they naturally
write mathematical prose (left). Here, the resulting diagram (right) plays the role of the concluding statement.

4.2.1.2 Abstract Content (SUBSTANCE)

To define the content of a diagram, one must be able to specify (i) the objects in the diagram, and
(ii) relationships among these objects. In line with Goal 1, SUBSTANCE uses concise assertions
that resemble standard mathematical prose (see for example Figure 4.7). Formally, it can model
any domain expressible in a compositional language of types, functions, and predicates, which
are the basic constructs found in conventional mathematical notation [59]. Just as definitions
are typically immutable in mathematics, SUBSTANCE draws inspiration from strongly typed
functional languages (such as ML [121]) where objects are stateless. This choice also simplifies
system implementation, since the compiler can assume fixed definitions. A conscious design
decision, in line with Goal 3, is to exclude all graphical data (coordinates, sizes, colors, etc.) from
SUBSTANCE—since its sole purpose is to specify abstract relationships rather than quantitative
data. All such data is instead specified in STYLE or determined via optimization. This division
relieves users from the burden of tedious and repetitive graphics programming, which can instead
be factored out into reusable STYLE code.

Existing languages would be difficult to use in place of SUBSTANCE since they lack the
semantics needed to encode complex logical relationships and do not provide language-level
extensibility. For instance, TEX [13] and MathML [123] markup provide only enough information
to translate plain text into mathematical glyphs; computer algebra systems like Mathematica and
Maple have limited type systems or provide only a small set of fixed predicates (e.g., asserting that
a number is real). Conversely, the much richer languages used by automated theorem provers and
proof assistants (such as Coq [18] and Lean [125]) are overkill for simply specifying diagrams. A
custom language provides simple, familiar syntax and clear error messages. We do however adopt
some ideas from Coq, such as the ability to customize syntactic sugar (Section 4.3.1).

4.2.1.3 Visual Representation (STYLE)

The meaning of a diagram is largely conveyed by relative relationships rather than absolute
coordinates. Moreover, diagrams are often underconstrained: relationships needed to convey
the intended meaning determine a family of possible solutions, rather than a single unique
diagram. STYLE hence adopts a constraint-based approach to graphical specification in the spirit
of Sketchpad [167]: diagrams are built up from constraints and objectives (Section 4.3.3.6),
then unspecified quantities are solved for via numerical optimization (Section 4.4). Though

32

procedural definitions can still be used, the programmer need not provide absolute coordinates
(as in imperative languages like PostScript or OpenGL). Though an implicit specification can
make output hard to predict, part of the allure of PENROSE is the potential to find interesting
or surprising examples. Moreover, the approach yields more concise code; for instance, STYLE

programs are much shorter than the SVG files they produce.
A key design challenge is identifying objects that appear in a SUBSTANCE program. Objects

in a given domain are distinguished not only by their type, but also by their relationships to other
objects. A widely-used mechanism for specifying such relationships is through CSS-like selectors.
STYLE adopts a similar mechanism that performs pattern matching on the types, functions, and
predicates appearing in a DOMAIN schema (Section 4.3.3.1).

4.2.2 Optimization-Based Synthesis

The second major design decision in PENROSE is to use constrained optimization to synthesize
diagrams satisfying a given specification (Section 4.4). This approach is again inspired by how
people often draw diagrams by hand (e.g., using GUI-based tools): visual icons are placed on a
canvas and iteratively adjusted until no further improvements can be made. In difficult scenarios, a
diagrammer may try several global arrangements before refining the final design, though typically
no more than a few. Automating this process makes it easy to perform layout tasks that would be
tedious by hand (Figure 4.8).

optimizing

Figure 4.8: An optimization-based approach makes it possible to jointly optimize visual attributes that are difficult
to coordinate by hand. Here for instance we optimize color contrast according to the spatial proximity of adjacent
disks (left to right), ultimately discovering a two-color solution (far right). The system can also be used to debug the
optimization process itself—in this case by drawing the hue of each disk as a dot on a color wheel.

There are good reasons to believe that an optimization-based approach can scale to very
complex diagrams. First, attractive diagrams need not be optimal in a global sense—they should
simply not permit obvious local improvements, such as text that could easily be moved closer
to the item it labels. In fact, disparate local minima can provide useful examples that help build
intuition (Figure 4.9). Second, even sophisticated diagrams have surprisingly few degrees of
freedom in comparison to many modern optimization problems (e.g., tens or hundreds, versus
thousands or millions). Finally, strategies employed by expert diagrammers can be applied to
manage complexity, such as independently optimizing small components of a diagram (akin to
nonlinear Gauss-Seidel), rather than optimizing all degrees of freedom simultaneously.

33

Figure 4.9: A language-based design makes
it easy to build tools on top of PENROSE that
provide additional power. Here we use stan-
dard techniques from program synthesis (Sec-
tion 4.5.7) to automatically enumerate how the
given relationships can be realized. Generating
such examples helps to see important corner
cases that might be missed when drawing di-
agrams by hand (where perhaps the top-left
diagram most easily comes to mind).

In line with Goal 2 and Goal 3, an optimization-based approach can be applied generically
and automatically for any user-defined domain and visual representation, without requiring
programmers to think about the details of the layout process. In our system, the optimization
problem is defined using common-sense keywords (Section 4.3.3.6) in STYLE and chaining
together basic operations (e.g., arithmetic). Since the diagram specification is divorced from the
details of the solver, optimization strategies can be changed and improved in future versions of
the system while preserving compatibility with existing code.2 The main cost of an optimization-
based approach is that it puts demands on system design “upstream”: all expressions used to
define a visual style must be differentiable. As discussed in Section 4.4.2, these requirements are
largely satisfied via standard techniques (e.g., by using automatic differentiation).

In general, diagram optimization is a challenging problem in its own right, which we of course
do not aim to solve conclusively in this chapter. Currently, we just use a generic constrained
descent solver (Section 4.4.2). However, we have been pleased to find that this simple approach
handles a wide variety of examples from different domains without requiring domain-specific
strategies.

4.2.3 Plugins
The final design decision in PENROSE is to provide system-level extensibility via a plugin interface
for calling external code in SUBSTANCE and STYLE. Providing a plugin system is essential to
enable users to integrate external code that is specialized to solve particular logical or graphical
challenges. In fact, such interfaces for integrating external code are already provided by many
systems (e.g., TEX, Adobe Illustrator, and TikZ’s plugin system for graph layout algorithms [49]).
The interface for PENROSE plugins is designed to define a clear and simple boundary between
the PENROSE system and the plugin while enabling each component to focus on its strengths. A
plugin can analyze and augment the set of abstract objects defined in SUBSTANCE, as well as
analyze and augment the numerical information in STYLE. This simple interface allows plugins
to be written in any language (or repurposed from other systems) and operate independently
from the implementation details of PENROSE. However, a plugin cannot change an existing
SUBSTANCE or STYLE program or directly generate static graphical content, since such plugins
would abandon the benefits that PENROSE provides, such as the ability to re-style content and

2Note that similar to other software systems that evolve over time. Specific changes that alter the system defaults
and assumptions (“breaking changes”) may break compatibility.

34

avoid use of absolute coordinates. Figure 4.4 illustrates how a simple plugin can make use of
SUBSTANCE and STYLE information to create “responsive” diagrams.

4.3 Language Framework

The PENROSE language framework comprises three languages that play different roles:

• A DOMAIN schema declares the objects, relationships, and notation available in a domain.
• A SUBSTANCE program makes specific assertions within some domain.
• A STYLE program defines a generic mapping from abstract statements in some domain to

a visual representation.

A package consisting of a DOMAIN, and one or more compatible STYLE programs, can be
used to illustrate SUBSTANCE programs from a given domain (Figure 4.2). Though some starter
packages are provided for the examples discussed in Section 4.5, the real power of STYLE and
DOMAIN is that they enable PENROSE to be easily extended. In this section we illustrate these
languages via the running example of a linear algebra package (Figures 4.10 through 4.12).

4.3.1 The DOMAIN Schema

A DOMAIN schema describes a domain of mathematics by defining the objects and notation that
can be used by associated SUBSTANCE and STYLE programs. A partial example for linear algebra
is shown in Figure 4.10. The type lines define the available object types, function lines define
the domain and codomain for the set of available functions (where * denotes a Cartesian product),
and predicate lines define the possible relationships among objects, including unary predicates.
Importantly, a DOMAIN schema is purely abstract: it does not define a specific representation for
objects, nor does it define bodies for functions or predicates. For instance, we do not say here
that a vector is encoded by a list of coordinates, nor do we write an addition operation on such
coordinates. A concrete visual interpretation of these definitions is given by a STYLE program
(Section 4.3.3). Types can be given fields via constructors. For instance, the line

constructor MakeInterval: Real min * Real max -> Interval

assigns fields min and max to an Interval, which can be accessed from a SUBSTANCE or STYLE

program (e.g., to assert a relationship between endpoints). Subtyping via the syntax Subtype <:
Type facilitates generic programming. Finally, notation lines define optional syntactic sugar
that can simplify code (e.g., in Figure 4.11).

4.3.2 The SUBSTANCE Language

Each statement in the SUBSTANCE language either (i) declares an object, (ii) specifies properties
of an object, or (iii) specifies relationships among objects within some DOMAIN schema. As in
mathematics, not all attributes need be fully specified. For instance, one can talk about a point

35

1 type Scalar, VectorSpace, Vector -- LinearAlgebra.dsl

2 function add: Vector * Vector -> Vector
3 function norm: Vector -> Scalar
4 function scale: Scalar * Vector -> Vector
5 ...
6 predicate In: Vector * VectorSpace
7 predicate Unit: Vector
8 predicate Orthogonal: Vector * Vector
9 ...

10 notation "v1 + v2" ∼ "add(v1,v2)"
11 notation "|y1|" ∼ "norm(y1)"
12 notation "s * v1" ∼ "scale(s,v1)"
13 notation "Vector v ∈ V" ∼ "Vector a; In(a,U)"
14 notation "v1 ⊥ v2" ∼ "Orthogonal(v1,v2)"
15 ...

Figure 4.10: A DOMAIN schema specifies the building blocks available in a given domain, as well as any associated
syntactic sugar. This schema (abbreviated) enumerates some basic constructs from linear algebra.

VectorSpace X
Vector x1, x2
In(x1, X)
In(x2, X)
Unit(x1)
Orthogonal(x1, x2)
label x1 x_1
label x2 x_2

(unsugared)

VectorSpace X
Vector x1, x2 ∈ X
Unit(x1)
x1 ⊥ x2
label x1 x_1
label x2 x_2

(sugared)

Figure 4.11: When used with the STYLE defined in Figure 4.12, this SUBSTANCE code (with or without syntactic
sugar) produces the diagram shown at right.

36

without giving it explicit coordinates. Together, these statements describe a context that encloses
all the abstract objects and relationships that have been defined.

Figure 4.11 shows an example in which SUBSTANCE code specifies properties and relation-
ships for a pair of vectors. Importantly, these statements do not induce any kind of numerical
evaluation. For instance, no coordinates are assigned to x1 in order to make it unit—in fact, the
vector space X does not even have an explicit dimension. Instead, statements specify persistent
and purely symbolic relationships that provide cues for visualization; specific coordinates and
attributes are later determined by the layout engine (Section 4.4). The final lines specify label
strings to be used by the STYLE program, here in TEX notation. Figure 4.11, center shows a
“sugared” version of this program using notation defined in the DOMAIN schema (Figure 4.10).
Users can write programs either way, depending on the capabilities of their editor (e.g., support
for Unicode input).

4.3.3 The STYLE language

R
ul
e

Declaration

Selector

STYLE specifies how expressions in a SUBSTANCE

program are translated into graphical objects and re-
lationships. It is a declarative specification language
that shares many features with CSS. The core princi-
ple is to sketch out basic rules (e.g., visual icons for
basic types) and then refine these rules via cascading

(Section 4.3.3.2). Each rule uses a selector to pattern match on objects and relationships appearing
in SUBSTANCE code (Section 4.3.3.1). A sequence of declarations then specifies a corresponding
visualization, e.g., by emitting graphical primitives or enforcing constraints. Each declaration
either assigns a value to a field (Sections 4.3.3.3 and 4.3.3.5) or specifies a constraint or objective
(Section 4.3.3.6). An example is shown in Figure 4.12, which defines part of the style used for the
SUBSTANCE program in Figure 4.11. We will use this example to highlight the basic features of
the language.

4.3.3.1 Selectors

A selector uses pattern matching to specify which objects will be styled by a rule. Unlike regular
expressions, selectors do not match literal strings of SUBSTANCE code, but rather objects and
relationships in the context defined by this code. A simple example is a selector that matches
every instance of a type, indicated by the forall keyword. For instance, Line 1 matches all
vector spaces. In subsequent declarations, U refers to the vector space X from the SUBSTANCE

program. The where keyword restricts matches to objects that satisfy one or more relationships;
e.g., Line 34 matches all pairs of orthogonal vectors. One can also match by name using backticks;
e.g., Line 44 matches only the vector x2 . Selectors could be enriched in the future to allow other
statements from first-order logic (such as ∃, disjunctions, and conjunctions).

37

1 forall VectorSpace U { -- LinearAlgebra.sty
2 U.originX = ? -- to be determined via optimization
3 U.originY = ? -- to be determined via optimization
4 U.origin = (U.originX, U.originY)
5 U.xAxis = Arrow { -- draw an arrow along the x-axis
6 startX : U.originX - 1
7 startY : U.originY
8 endX : U.originX + 1
9 endY : U.originY

10 thickness : 1.5
11 style : "solid"
12 color : Colors.lightGray
13 } -- (similar declarations omitted for the y-axis)
14 }
15 forall Vector u, VectorSpace U where In(u, U) {
16 u.arrow = Arrow {
17 startX : U.originX
18 startY : U.originY
19 endX : ?
20 endY : ?
21 color : Colors.mediumBlue
22 }
23 u.text = Text {
24 string : u.label -- label from Substance code
25 color : u.arrow.color -- use arrow’s color
26 }
27 u.start = (u.arrow.startX, u.arrow.startY)
28 u.end = (u.arrow.endX, u.arrow.endY)
29 u.vector = minus(u.arrow.end, u.arrow.start)
30 encourage near(u.text, u.end)
31 ensure contained(u.end, U.shape)
32 }
33 forall Vector u, Vector v
34 where Orthogonal(u, v) {
35 local.perpMark = Curve {
36 pathData : orientedSquare(u.shape, v.shape, U.origin, const.perpLen)
37 strokeWidth : 2.0
38 color : Colors.black
39 fill : Colors.white
40 }
41 ensure equals(dot(u.vector, v.vector), 0.0)
42 }
43 ... -- (similar rule omitted for Unit)
44 Vector ‘x2‘ { override ‘x2‘.shape.color = Colors.green; }

Figure 4.12: The STYLE program defining the visual style used in Figure 4.11, right. Note that this STYLE program
can be reused for many different SUBSTANCE programs in the same domain.

38

4.3.3.2 Cascading

A cascading mechanism allows rules to be refined for more specialized objects or relationships.
For example, the selector in Line 44 matches a specific vector, refining an earlier rule that applies
to all vectors. Rule precedence is determined by order in the STYLE file, and later rules can refer
to any previously defined field (Section 4.3.3.3). The override keyword (Line 44) hints that a
rule will modify an existing field, otherwise the compiler issues a warning.

4.3.3.3 Fields

The visual representation of an object is specified by creating fields that are assigned values
(Section 4.3.3.5). For instance, in Lines 16–22 a field called u.arrow is created and assigned
an expression describing an arrow. Fields are created on assignment and can have any name
not conflicting with a reserved word. Fields not naturally associated with a single object can
also be assigned locally to a rule. For instance, Line 35 is used to draw a right angle mark
between any pair of orthogonal vectors. Every object automatically has fields name and label
storing its SUBSTANCE name and label string (resp.), as well as any field created via a constructor
(Section 4.3.1).

4.3.3.4 Properties

STYLE provides built-in graphical primitives (circle, arrow, etc.) with a fixed set of properties.
Like fields, properties can be assigned values (as in Lines 35–40). If a value is not assigned, it will
be assigned a default value, possibly a pending value (Section 4.3.3.5). For example, an arrow
might be black by default, whereas the width of a box might be optimized (akin to flexible space
in TEX).

4.3.3.5 Values and Expressions

Atomic values can be combined to form expressions. For instance, Lines 10–12 assign values,
whereas Lines 6–9 assign composite expressions involving inline computation. Line 25 specifies
value via a path, i.e.„ a sequence of expressions separated by . characters; such assignments
are made by reference. Expressions can also access values from plugins (Section 4.4.3). A very
important construct is pending values, denoted by a ? as in Line 19. This line specifies that the
location of the arrow endpoint is not fixed and will be automatically determined by the solver
(Section 4.4).

4.3.3.6 Constraints and Objectives

Constraints and objectives describe how pending values should behave. In particular, the ensure
keyword defines a constraint. For instance, Line 41 specifies that two orthogonal vectors must
be drawn at right angles. The encourage keyword specifies an objective. For instance, Line 30
asks that the label for a vector be placed close to its endpoint. These expressions are all translated
into energy functions that make up a numerical optimization problem. It is important to note,
therefore, that our solver (Section 4.4.2) may converge without satisfying all constraints.

39

lexing & parsing

Compilation
pa�ern matching

& cascading
Optimization

Rendering
input source files

final
diagram

search &
substitution

.DSL .SUB .STY
ASTs computation

graph

objective
graph

final
valuesconstraint

graph

Figure 4.13: Pipeline view of the layout engine. Rather than a single static image, compilation yields an optimization
problem that can be solved and re-solved to produce many diagrams, or (in principle) used in an interactive tool.

4.4 Layout engine
The layout engine translates PENROSE code into images (Figure 4.13). There are two main stages:
a compiler (Section 4.4.1) translates code into an optimization problem that describes possible
diagrams, then a solver (Section 4.4.2) produces solutions to this problem. These values are used
to render the final diagram (Section 4.4.4). For simplicity, the goal is to automatically produce one
static diagram, but the same pipeline could be extended to support capabilities like interaction.

4.4.1 Compiler
The input to the compiler is a triple of files: a DOMAIN schema with SUBSTANCE and STYLE

programs. The output is a constrained optimization problem, expressed as a computational graph.

4.4.1.1 Parsing and Type Checking

We parse each of the input files into abstract syntax trees (ASTs), applying static typechecking to
ensure that types are well-formed and variables are well-typed. We first typecheck the DOMAIN

program since it defines the valid types for the SUBSTANCE and STYLE programs, then use these
types to check the SUBSTANCE program and the selectors in the STYLE code.

4.4.1.2 Computational Graph

The ASTs are combined to define a computational graph that encodes operations that define
the final diagram (Figure 4.14). To build this graph, we apply a standard pattern matching and
cascading procedure: iterate over rules in the STYLE program, find tuples of SUBSTANCE variables
that match the selector pattern, then modify the graph according to the declarations within the
matched rule. For example, when the first selector VectorSpace U from Figure 4.12 matches
the variable X from Figure 4.11, we add nodes to the graph that encode the axes of this vector

40

Figure 4.14: Applying the mapping defined by
STYLE code to a SUBSTANCE program yields a
graph that describes how to draw the diagram—
here, for part of Figure 4.11. Some values are
known (in blue), whereas others (in orange)
depend on unknowns that must be determined
via optimization.

+

(-1,0) (?,?)

+

(1,0)

1.5

solid LightGray

X

xAxis origin

startend

thickness

style color

Objective

+

Constraints

&&

near near contained equal

x1.shape.end x1.text.position x2.text.position

x2.shape.end

X.bbox dotProduct 0

x1.vector x2.vector

x2.shape.end

Figure 4.15: The computation graph is further expanded to produce graphs representing the objective and constraint
space for our optimization problem. From there, we can use automatic differentiation to obtain derivatives. This
figure depicts part of the optimization graph for Figure 4.11.

space. In general, declarations could also remove nodes from the graph or connect previously
added nodes. Once this transformation is complete, we have replaced all abstract mathematical
descriptions with concrete graphical representatives. All that remains is to determine pending
values (i.e., those marked by a ?) and those values that depend on them, which will be done by
the solver.

4.4.1.3 Optimization Graphs

To encode the optimization problem, we collect terms from the computational graph into an
objective and constraint graph (Figure 4.15). Each ensure and encourage statement is then
replaced by the corresponding mathematical expression. For instance, ensure equal(x,y) is
translated into the constraint x − y = 0, which the solver seeks to enforce exactly, whereas
encourage equal(x,y) becomes the objective (x− y)2, which the solver seeks to minimize as
much as possible. The overall constraint set is the intersection of all constraints, and the overall
objective is a sum of objective terms. Currently PENROSE provides a fixed set of constraints
and objectives, though it would be straightforward to extend STYLE to allow user-defined inline
expressions.

41

initial
state

final
state

Figure 4.16: Our solver can lay out diagrams even if we do not initially know how to satisfy all the constraints. Here
we show several steps of optimization.

4.4.2 Solver

The optimization graphs produced by the compiler describe an optimization problem in standard
form, i.e., minimization of an objective function subject to equality and inequality constraints [25,
Section 4.1]. Such problems may be solved with many standard methods. We currently use an
exterior point method [76] that starts with an infeasible point and pushes it toward a feasible
configuration via progressively stiffer penalty functions—mirroring a process often used by hand
(Section 4.2.2). Specifically, PENROSE encodes constraints as nonnegative penalty functions
P1, . . . ,Pl : Rm → R≥0 each of which equal 0 if and only if the constraint is satisfied. Objectives
are energy terms E1, . . . , Ek. Overall, the PENROSE layout engine solves an optimization problem:

min
~p∈Rm

k∑
i=1

Ei(~p) s.t.
l∑

i=1

Pi(~p) = 0. (4.1)

The exterior point method [76] to pose this problem as a sequence of unconstrained optimization
problems, where constraints are iteratively stiffened over layout steps:

min
~p∈Rm

k∑
i=1

Ei(~p) + cn

l∑
i=1

P2
i (~p), n = 0, 1, 2, · · · (4.2)

The exterior point method is an appropriate choice since (i) a feasible starting point is typically
not known (Figure 4.16), and (ii) by converting constraints into progressively stiffer penalty
functions, we can use descent algorithms that do not directly support constrained optimization. In
particular, we use L-BFGS with a line search strategy suitable for nonsmooth objectives [106].
Given the rich structure of our optimization graphs, which can be linked back to program semantics,
there are plenty of opportunities to improve this generic strategy, such as decomposing the problem
into smaller pieces that can be independently optimized, or employing an SMT solver to find a
feasible initial state.

42

4.4.2.1 Initialization

Just as a human diagrammer might consider several initial arrangements, we randomly sample
several configurations and optimize only the most promising ones, i.e.„ the ones with the least
overall energy in the exterior point problem. Initial values are sampled uniformly at random from
a range related to their types; for example, RGB color values are sampled from [0, 1].

4.4.2.2 Failures and warnings

Since our language framework is quite general, a programmer might define difficult or impossible
optimization problems. Hence, we can’t guarantee that PENROSE produces a valid diagram.
However, the system may provide feedback by simply printing an error message if any of the
constraint values are nonzero.3 The resulting invalid diagram might even provide useful visual
intuition for why the STYLE program failed (Figure 4.3).

4.4.3 Plugins
A plugin is a piece of external code, written in any language, that is given information from a
specific pair of SUBSTANCE and STYLE files and can produce more SUBSTANCE and STYLE

information in specific files for PENROSE to use. A plugin is run when making diagrams with
a particular STYLE. A STYLE may declare the plugins to be called at the top of the file with
the syntax plugin "myPlugin" (args) , which states that the plugin myPlugin should be run
with the given argument list. When a diagram is generated, the plugin is given the SUBSTANCE

program as a JSON file, as well as the parameters given in STYLE as command-line arguments.
The plugin can output new SUBSTANCE code as a text file and/or a set of values for the fields of
any SUBSTANCE variable, encoded as a JSON file. The SUBSTANCE code generated by a plugin
is appended to the existing SUBSTANCE program, and the values generated by the plugin can
be accessed in STYLE via the syntax myPlugin[variable][field] . Note that a plugin is run
exactly once, prior to execution of all PENROSE code. Therefore, the values generated by a plugin
are not optimized by the layout engine, so plugin code does not have to be differentiable. For
examples of plugin use, see Section 4.5.2 and Section 4.5.5.

4.4.4 Rendering
In this chapter we focused on generating 2D vector graphics, but in principle nothing about our
system design limits us to this particular target. For instance, the constraint-based approach is just
as suitable for, say, generating arrangements of 3D objects that can be rendered via photorealistic
ray tracing [144], or even constrained interactive diagrams that could be used in virtual reality.
In our current implementation, graphical primitives are translated to SVG-native primitives via
React.js [55] and labels are postprocessed from raw TEX to SVG paths using MathJax [34].

3An earlier version of this feature exists in the PENROSE web editor (Section 4.4.5, https://github.com/
penrose/penrose/pull/534). The feature works by plugging the final optimized values back into the constraints
and objectives to check for constraint satisfaction and report the final energy values for objectives. This feature is yet
to be ported to the current version since the migration to TypeScript (Section 4.6.1).

43

https://github.com/penrose/penrose/pull/534
https://github.com/penrose/penrose/pull/534

Figure 4.17: Our system supports integration with web-based applications. Here a PENROSE IDE provides automatic
syntax highlighting and autocomplete for any user-defined domain.

Since PENROSE code is typically quite concise, we embed it as metadata into the SVG, easing
reproducibility. We also embed SUBSTANCE names as tooltips to improve accessibility.

4.4.5 Development Environment

To facilitate development, we built a web-based IDE (Figure 4.17) that highlights the potential for
high-level diagramming tools built on PENROSE. For instance, since the DOMAIN grammar has a
standard structure, the IDE can provide features like autocomplete and syntax highlighting for
any domain. We are optimistic that the design choices made in Section 4.2 will support the use of
PENROSE as a platform for building diagramming tools beyond the use cases in this chapter.

4.4.6 Implementation

The PENROSE system is written in Haskell and the rendering frontend is written in Typescript. We
wrote our own solver using the Haskell library ad [94] to perform automatic differentiation. We
provide one output target and renderer (SVG), together with a fixed set of graphical primitives that
are loosely based on SVG (e.g., circles and paths), plus features that SVG users commonly add by
hand, like arrowheads. We also provide a fixed set of objectives and constraints for specifying
spatial layout, such as shape containment and adjacency relationships, and other functions for
performing spatial queries, such as computing bounding boxes and pairwise distances. Sustained
use by a community of users might point the way to a standard library. The system has been
open-sourced here: github.com/penrose/penrose

44

Figure 4.18: Two STYLE programs illustrate classification of life in biology as an Euler diagram (left) and a tree
diagram (right).

4.5 Examples and Evaluation
Our main goal for PENROSE was to create a system that can automatically generate diagrams
from many different domains using familiar syntax. Here we examine our design by exploring
examples from a variety of common domains in mathematics and computer graphics; we also
do some basic performance analysis (Section 4.5.8). These examples are developed by us4 in an
ad-hoc manner, and by no means cover all of scientific visualizations. However, we did strive to
select a variety of domains. Generally speaking, this evaluation does not evaluate how general the
system is for all potential diagramming domains—it merely showcases the system’s capabilities
in a diverse set of domains.

4.5.1 Sets
A simple example that illustrates many principles of our system design is the domain of basic
set theory—Figure 4.19 shows a complete listing for one of three possible styles.5 Notice here
the complete absence of explicit coordinates in both the SUBSTANCE and STYLE code. The
other two STYLE programs either improve the visual styling, or shift to a different representation
where subset inclusion is indicated by a tree-like drawing rather that overlapping disks. Different
representations are especially helpful for different types of examples—for instance, disks must
shrink exponentially for deeply nested subsets (Figure 4.18, left), whereas a tree diagram remains
easy to read (Figure 4.18, right).

This example also demonstrates the benefit of a more explicit type system, rather than,
say, interpreting raw mathematical strings as in TEX. In particular, Figure 4.9 shows how a
DOMAIN schema can be used with program synthesis techniques (Section 4.5.7) to automatically
enumerate different logical instantiations of the given SUBSTANCE code. To make this example,
there was no need to model sets as an explicit datatype (e.g., a list of points) nor to assign
semantics to these datatypes (such as the impossibility of two sets being both intersecting and
nonintersecting). Instead, the program synthesizer can reason purely about the abstract types

4Authors of [191].
5All 3 STYLE programs as of PENROSE version v4.0.0-alpha.3 are included in Appendix D.

45

specified in the DOMAIN schema, letting the constraints defined in the STYLE define the visual
semantics. Thus, the program synthesizer can check if the generated code is valid by simply testing
if the constraints defined in STYLE all evaluate to zero for the optimized diagram. This example
captures an important aspect of our system design: the mapping defined by STYLE programs not
only provides a superficial visual interpretation, but also assigns deeper mathematical meaning.

4.5.2 Functions
A natural concept to build on top of sets is mappings between sets. This example also

illustrates the use of plugins (Section 4.4.3). We first add a Map type to the DOMAIN for sets
(Section 4.5.1), as well as a constructor From: Set * Set -> Map specifying the domain and
codomain of the map. Here, syntactic sugar

notation "f: A -> B" "Map f; From(f, A, B)"

enables one to both declare and define the map via the concise, familiar notation f: A -> B .
In Figure 4.20 we add predicates Injection , Surjection , and Bijection to the DOMAIN

schema to illustrate some basic ideas about maps. The two different styles of illustration help
ease the transition from thinking of mappings between discrete points to thinking of continuous
mappings on the real line. To generate the discrete examples, we wrote a plugin (Section 4.4.3)
that acts as “glue” between PENROSE and an external SMT solver (another example is shown
in Figure 4.21). The compiler uses this plugin to expand the Map objects from Figure 4.20,
top into specific instances of a new Point type, as well as a new predicate (a, b) ∈ f that
expresses a map as an explicit list of domain/codomain pairs. For instance, the map in Figure 4.20
generates points Point A0, A1, B0, B1, B2 with the two predicates (A0, B1) ∈ f and
(A1, B2) ∈ f . A STYLE tailored to these types is used to generate diagrams in Figure 4.20,
left; as in Figure 4.8, hue is optimized to enhance contrast between nearby points. In contrast, the
continuous function diagrams in Figure 4.20, right do not require an external plugin, but instead
constrain the degrees of freedom of a Bézier curve. Finally, Figure 4.21 shows how abstract
function composition in SUBSTANCE is automatically translated into explicit composition of
generated functions by the STYLE program without any SUBSTANCE writer effort.

4.5.3 Geometry
Classical geometric figures provide a good opportunity to examine how one can use different
STYLE programs to change not only the superficial style of a diagram, but also its fundamental
visual representation. The familiar “two-column proof” exemplifies how, in mathematics, one
can make geometric statements without referring to explicit quantities like coordinates and
lengths. Likewise, compass-and-ruler constructions (dating back to the ancient Greeks) show
how geometric figures can be specified with only relative constraints. These modalities are well-
captured in the way we write SUBSTANCE and STYLE code for geometric diagrams, respectively.
For instance, Figure 4.23, top gives a listing of geometric assertions that resemble the left column
in a two-column proof. This would likely be a natural notation even for intermediate-level students.
A bare-bones STYLE program for this domain (not shown) comprises basic statements very similar
to those used in Figure 4.12, e.g., to express the orthogonality of two segments. (This approach is

46

type Set -- Sets.dsl
predicate Intersecting : Set s1 * Set s2
predicate IsSubset : Set s1 * Set s2
predicate Not : Prop p
notation "A ⊂ B" ~ "IsSubset(A, B)"
notation "A ∩ B = ∅" ~ "Not(Intersecting(A, B))"

Set A, B, C, D, E, F, G
B ⊂ A
C ⊂ A
D ⊂ B
E ⊂ B

F ⊂ C -- Sets.sub
G ⊂ C
E ∩ D = ∅
F ∩ G = ∅
B ∩ C = ∅

forall Set x { -- Sets-Disks.sty
x.shape = Circle { strokeWidth : 0.0 }
x.text = Text { string : x.label }
ensure contains(x.shape, x.text)
encourage sameCenter(x.text, x.shape)
layer x.shape below x.text

}
forall Set x; Set y
where IsSubset(x, y) {

ensure contains(y.shape, x.shape)
ensure smallerThan(x.shape, y.shape)
ensure outsideOf(y.text, x.shape)
layer x.shape above y.shape
layer y.text below x.shape

}
forall Set x; Set y
where NotIntersecting(x, y) {

ensure disjoint(x.shape, y.shape)
}

Figure 4.19: Here, some SUBSTANCE code is used to specify set relationships. Different STYLE programs not only
tweak the visual style (e.g., flat vs. shaded disks), but allow one to use a completely different visual representation
(e.g., a tree showing set inclusions). Sets.sty above describes the flat disk style.

47

-- Injection.sub
Set A, B
f: A -> B
Injection(f)
Not(Surjection(f))

-- Surjection.sub
Set A, B
f: A -> B
Surjection(f)
Not(Injection(f))

-- Bijection.sub
Set A, B
f: A -> B
Surjection(f)
Injection(f)

in
je

ct
io

n

Style — discrete Style — continuous

su
rj

ec
ti

on
bi

je
ct

io
n

Figure 4.20: Different visual representations provide different ways of thinking about an idea. Here, the notion of
injections, bijections, and surjections is illustrated in both discrete (left) and continuous (right) styles. In the former,
functions with the desired properties are randomly generated by an SMT solver, allowing the user to learn from many
different examples.

48

Set A, B, C
f: A -> B
g: B -> C
Injection(f)
Bijection(g)
Function gf = g(f)

Figure 4.21: Here, abstract function composition is realized as explicit composition of functions produced via an
SMT solver, illustrating the fact that the composition of an injection and a bijection is an injection.

similar to the special-purpose geometry package GCLC [87]; however, here the domain of objects
and visual representations are both extensible at the language level.)

B

A

C

Figure 4.22: Diagrams used as inspi-
ration for the STYLEs in Figure 4.23.

One goal of PENROSE is to codify the subjective style
choices made by professional illustrators so non-expert users
can benefit from their expertise. Figure 4.23, bottom cascades
on the bare-bones STYLE program to riff on styles from several
existing sources (shown in inset), namely, Byrne’s Euclid [30],
Wikipedia [41], and a collection of illustrated notes on discrete
differential geometry [43]. This figure also illustrates how we
can “mix and match” different STYLE and SUBSTANCE pro-
grams. The bulk of these styles (∼500 lines) share the same
baseline Style code; additional code for a specific style requires
less than 100 more lines. To illustrate the Pythagorean theorem
(right column), we also used cascading to add diagram-specific
features (e.g., altitude and extension lines).

In the spirit of Hilbert’s quip (Section 4.2), we can also swap out the basic visual representation
of a given set of logical statements. For instance, any collection of geometric statements that does
not assume the parallel postulate can be realized in several different geometries (Figure 5.2). To
generate this figure, we wrote three STYLE programs that all match on the same patterns from
a common “neutral geometry” DOMAIN schema. Swapping out these STYLE files then allows
users to build intuition about spherical or hyperbolic geometry by exploring how a given figure
(expressed via SUBSTANCE) differs from its Euclidean counterpart. Such an example could be
further enriched by writing styles for different models of hyperbolic geometry (such as half-plane,
hyperboloid, or Beltrami-Klein), each of which involves meticulous calculations.

Finally, the diagram specification enables us to build “staged” diagrams, such as ones illus-
trating the steps of a proof. Figure 4.24 successively uncomments lines of SUBSTANCE code to
produce a style of explanation common in textbooks and slides, a strategy which could easily be

49

Point A, B, C
-- define a right triangle
Triangle ABC := {A,B,C}
Angle θ := ∠(C,A,B)
Right(θ)
-- square each side
Point D, E, F, G, H, I
Square CBDE := [C,B,D,E]
Disjoint(CBDE, ABC)
Square BAGF := [B,A,G,F]
Disjoint(BAGF, ABC)
Square ACIH := [A,C,I,H]
Disjoint(ACIH, ABC
-- split hypotenuse area
Segment AK := Altitude(ABC,θ)
Point K := Endpoint(AK)
Segment DE := {D,E}
Point L
On(L, DE)
Segment KL := {K,L}
Perpendicular(KL, DE)
Rectangle BDLK := {B,D,L,K}
Rectangle CKLE := {C,K,L,E}
-- (plus additional objects
-- from Byrne’s diagram)

St
yl

e
—

 b
lu

e
St

yl
e

—
 W

ik
ip

ed
ia

St
yl

e
—

 B
yr

ne

Figure 4.23: The cascading design of STYLE enables one to modify a base style with relatively little code. Here the
two SUBSTANCE programs from Figure 5.2 and the listing above are visualized in three different styles, all of which
build on the same basic constraints and objectives.

50

Figure 4.24: Once a complex diagram has been built, it can be easily broken into pieces or stages by, e.g., commenting
out lines of SUBSTANCE code. Here we illustrate steps in Euclid’s proof of the Pythagorean theorem, turning Byrne’s
static figure (far right) into a progressive “comic strip.”

applied to (say) any two-column proof. In this example, the values of optimized variables are
fixed by hand; an interesting question is how this might be done automatically.

4.5.4 Linear Algebra

In mathematics, complexity is built up by composing simple statements. The mapping defined by
a STYLE program automatically lifts this compositionality to the visual setting. That is, it enables
SUBSTANCE writers to compose logical statements to build up visual complexity without explicit
effort from the STYLE programmer. A good analogy is procedural L-systems [145]. Although
a graphics programmer can directly write code to recursively apply spatial transformations, it
saves effort to first generate strings in a grammar, then systematically translate these strings into
graphical transformations.

In PENROSE, examples from linear algebra demonstrate compositionality. The STYLE declara-
tion on Line 22 of Figure 4.12 defines the visual icon for a vector (a 2D arrow). Suppose we now
want to illustrate linear maps, denoted by f , which have two defining properties: linearity of vector
addition (f(u+ v) = f(u) + f(v) for all vectors u, v) and homogeneity of scalar multiplication
(f(cu) = cf(u) for all vectors u and scalars c). Successive STYLE rules cascade on Figure 4.12
to define how these logical operations should be mapped to visual transformations. For example,
application of a linear map f is represented by a literal 2× 2 matrix-vector multiply; the image
vector f(u) also inherits the color of the argument u. The map itself is visually represented by a
labeled arrow, and the domain and target spaces by coordinate planes on either side. The STYLE

programmer need not compose these directives explicitly; the compiler does the tedious job of
translating SUBSTANCE statements (Figure 4.25, top) into a composition of graphical statements
that define a diagram (Figure 4.25, bottom). Moreover, since the STYLE program faithfully
represents the underlying mathematics, we observe the expected properties, e.g., the arrow for
f(u1 + u2) is the same as the arrow for f(u1) + f(u2). Automatically checking consistency of
the visual representation based on analysis of a richer DOMAIN schema would be an interesting
topic for future work.

51

Finally, the inset (above) shows an alternative representation for vectors and scalars as signed
and unsigned quantities (u1 and c, resp.) on the number line. The benefit of a 1D representation
is that the remaining dimension can be used to illustrate different concepts, in this case relating
the magnitude of a product to an area. The ability to switch between representations can be
pedagogically valuable, such as for transitioning from lower to higher mathematics.

4.5.5 Meshes

Polygonal meshes are ubiquitous in computer graphics, but illustrating meshes is often cumber-
some due to the large number of elements involved, especially when illustrating meshes by hand
or in GUI-based tools. In such cases, PENROSE can be useful not just for making illustrations, but
also to inspect and debug user-defined data structures by attaching them to custom visualizations.
A simple example is shown in Figure 4.26, where different regions of a mesh are specified via
standard operators on a simplicial complex; this diagram also illustrates the definition of the
simplicial link [19, Section 3.3]. Further examples in Figure 4.27 show how a user can quickly
build intuition about this definition by drawing the link of a variety of different mesh subsets.

To make these examples in PENROSE, we follow a pattern similar to the discrete function
example (Section 4.5.2): generic mesh objects from the SUBSTANCE code are refined into specific
instances of Vertex , Edge , and Face objects by an external plugin, which generates and
optimizes a random triangle mesh. Since meshes are randomly generated, the plugin passes
a random seed (from its STYLE arguments) to draw different pieces of the same mesh. For
this example, we used an existing JavaScript-based mesh processing library [159] that was not
designed ahead of time to interface with PENROSE. The benefit of generating these elements at
the SUBSTANCE level (rather than returning, say, a static SVG image) is that they can continue to
be styled and manipulated within PENROSE; the programmer does not have to edit extra graphics
code or keep it compatible with the STYLE program. Likewise, programmers who adopt PENROSE

as a tool for visual debugging can benefit from system improvements while writing minimal code
to attach their data structures to a visual representation.

4.5.6 Ray Tracing

Our final example constructs light path diagrams, which are often used to illustrate ideas in
physically-based rendering. The SUBSTANCE code expresses types of light paths via Heckbert’s
regular expression notation. For instance, the expression L(D|S)S*E specifies a family of light
paths that start at a light source (L), bounce off a diffuse or specular object (S|D), then bounce

52

VectorSpace U, V
LinearMap f : U → V
Vector u1, u2, u3 ∈ U
Vector v1, v2, v3, v4 ∈ V
u3 := u1 + u2
v1 := f(u1)
v2 := f(u2)
v3 := f(u3)
v4 := v1 + v2

VectorSpace U, V
LinearMap f : U → V
Vector u1, u2 ∈ U
Vector v1, v2, v3 ∈ V
Scalar c
u2 := c * u1
v1 := f(u1)
v2 := f(u2)
v3 := c * v1

Figure 4.25: Here we compose linear maps, showing addition and scaling, to illustrate the two defining properties of
linear maps.

53

SimplicialComplex K
Edge e ∈ K
Subcomplex E ⊆ K
E := Closure(e)
SimplicialSet StE ⊆ K
StE := Star(E)
Subcomplex ClStE ⊆ K

ClStE := Closure(StE)
Subcomplex ClE ⊆ K
ClE := Closure(E)
SimplicialSet StClE ⊆ K
StClE := Star(ClE)
SimplicialSet LkE ⊆ K
LkE := SetMinus(ClStE, StClE)

Figure 4.26: A language-based specification makes it easy to visually inspect data structures or assemble progressive
diagrams with only minor changes to program code. Here we draw the simplicial link by building it up from simpler
constituent operations.

54

SimplicialComplex K
SimplicialSet LkS := Link(S)

Vertex S ∈ K Edge S ∈ K

Vertex v1 ∈ K
Vertex v2 ∈ K
SimplicialSet S ⊆ K
S := {{v1},{v2}}

Figure 4.27: Domain-specific notation makes it easy to explore an idea by trying out many different examples. Here
several subsets of a simplicial complex are specified (top) to explore the definition of the “link” (bottom). An external
plugin generates random example meshes, further enriching exploration.

55

Figure 4.28: When drawing ray tracing diagrams by hand, it can be difficult to construct geometry that permits the
desired path types. Here we jointly optimize path and scene geometry to match multiple path types simultaneously.
Shown are several diagrams generated for the same program. A specular reflection (S) is represented as a mirror
reflection, whereas a diffuse reflection (D) is represented as a bounce off of one of the walls.

56

off zero or more specular objects (S*), then enter the “eye” or camera (E). One or more paths
can then be declared that have a given form (Figure 4.28). The challenge in generating a diagram
from such a specification is that there must be geometry in the scene that supports the given
path(s). For instance, for a fixed eye, light, and mirror, there may simply be no path of the form
LSE. Rather than meticulously constructing a valid scene by hand, we can use a STYLE program to
jointly optimize the scene geometry and the light path by specifying constraints such as equality
of incoming and outgoing angles at a specular bounce. The set of objects in the scene is generated
by a simple plugin that expands the regular expression into a set of compatible objects (e.g., a
mirror for each specular bounce). This plugin also uses the canvas size to choose appropriate
scene and path complexity according to the target output device (Figure 4.4). Diagrams for more
intricate light transport phenomena could be generated by calling an actual ray tracer (such as
PBRT [144]) to trace and rejection-sample paths by path type. The added value of generating the
final diagrams with PENROSE is that initial path and scene geometry generated by the external
code can be further optimized to meet other design goals, such as the canvas size. Additionally,
the visual style of a large collection of diagrams (e.g., for a set of course notes) can easily be
adjusted after the fact.

In our experience, PENROSE acts as a nexus for diagram generation. It connects disparate
components, such as language-based specification and ray tracing, into a diagramming tool that
provides the system-level benefits described in Section 4.1.

4.5.7 Large-Scale Diagram Generation
One goal for PENROSE is that effort spent on diagramming should be generalizable and reusable
(Goal 6). To demonstrate the system’s reuse potential, we developed a simple program synthe-
sizer to automatically create any number of diagrams randomly sampled from a domain. The
synthesizer is a simpler version of the EDGEWORTH mutation algorithm (Algorithm 1): given a
DOMAIN program, a STYLE program, and the number of diagrams (n) as input, the synthesizer
analyzes the DOMAIN program to find the mathematical constructs in the domain, randomly
creates n SUBSTANCE programs that contain these constructs, then compiles, optimizes, and
renders the results. Figure 4.9 demonstrates an example of using the synthesizer to “autocom-
plete” an underspecified SUBSTANCE program by automatically enumerating all possible subset
relationships, using information from the DOMAIN schema. Automatically generating diagrams
at scale can also help users write better STYLE programs, since synthesizer can “fuzz” the space
of possible SUBSTANCE programs to find corner cases.

To stress-test the system’s performance and the reusability of STYLE and DOMAIN programs,
we randomly generated 2000 SUBSTANCE programs from the sets domain (Section 4.5.1) in
the flat disc style. PENROSE was able to create diagrams for all samples. Though 1058 of the
2000 programs had conflicting constraints due to randomness, the solver failed gracefully (as in
Figure 4.3) and reached convergence.

4.5.8 Performance Evaluation
We hope to support an iterative workflow where the system’s performance does not block the
user’s creative process. One possible goal is to generate most diagrams within ten seconds, since

57

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150160
Selector matches

0

20

40

60

80

100

120

140

160

180

C
om

pi
la

tio
n

tim
e

(m
s)

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of constraints and objectives

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Ex
ec

ut
io

n
tim

e
(m

s)

compilation
label generation
optimization
rendering

Time type

Figure 4.29: We evaluated the performance of the PENROSE compiler by running it on a large collection of programs,
showing that the execution time of the compiler grows slowly as the number of selector matches increases (left). To
stress-test the system and collect timing information, we generated and visualized random SUBSTANCE programs of
different sizes, revealing that optimization dominates the execution time (right).

that threshold is deemed a “unit task” in cognitive science [132] and is about as long as similar
authoring processes take, such as building a LATEX document or compiling code. Even lower
latency (< 500 ms) might enable new applications of PENROSE, since this threshold benefits users
of data visualization, live programming, and other exploratory creative tools [111].

We have not focused on performance tuning, so a fully-interactive experience is not yet
possible with PENROSE. With our current naïve implementation, PENROSE generated 70% of
the figures in this chapter in under 10 seconds. However, some figures took significantly longer
(e.g., Figure 5.2, Figure 4.6, and Figure 4.23), up to a few minutes. To assess the system’s
performance, we used diagrams generated in Section 4.5.7 to simulate arbitrary user inputs and
measured the time to produce each diagram. To analyze the relative performance of different parts
of the system, we separately timed the four stages in the layout engine (Section 4.4): compilation,
optimization, label generation, and rendering. Timing was measured on a 2017 MacBook Pro;
note that performance in our web-based IDE (Section 4.4.5) is slower due to the cost of editor
services and communication with the browser. As shown in Figure 4.29 (right), optimization
dominates execution time, though the time to convergence grows slowly with the size of the
optimization problem. The second slowest part is the compiler, though Figure 4.29 (left) shows
that compilation time grows linearly with the number of selector matches, suggesting that the
compiler scales well.

We are optimistic about our ability to improve the optimization speed, since we are currently
using only a simple, generic solver that we implemented ourselves. (See Section 4.4.2 and
Section 4.8 for further discussion.) In our experience, optimization often slowed by objectives that
involve all pairs of a large collection of objects, especially for label placement, where all labels
“repel” all others. Here one could apply standard acceleration strategies for n-body problems,
such as the Barnes-Hut algorithm [9]. Moreover, though it may take time for diagrams to finish,
the optimization-based approach provides near-instantaneous feedback for most diagrams by
displaying the first few steps of the optimization process. These proto-diagrams typically provide
enough information about the final layout that the user can halt optimization and continue iterating
on the design.

58

4.6 Open-Source Development
The PENROSE system has been open-sourced since 2017 and is still in active development as
of the writing of this dissertation. In this section, we briefly discuss the evolution of the system
implementation, the open-source development infrastructure for PENROSE, and the open-source
community.

4.6.1 Evolution of the implementation
At the time of the publication of [191] in 2020, the core system was written in Haskell, which
is connected via WebSocket to a web editor written in TypeScript. Between 2020 and 2024,
the core has gone through major rewrites from Haskell to TypeScript, and the editor has been
completely rewritten. Some features such as the notation statements Section 4.3.1 and the plugin
system Section 4.4.3 have been deprecated, while new features have been added such as staged
layout6 and indexed statements in SUBSTANCE7. Some of recently added features are discussed
in Section 4.7.

4.6.2 Development infrastructure
Like many modern open-source tools, the PENROSE source code is hosted on GitHub and
community discussion happens on a Discord server. PENROSE is organized as a monolithic GitHub
repository which includes the website, all core libraries, command-line tools, and documentation.
On GitHub, contributors and core team members track issues, submit pull requests, and review
code openly. All other discussions take place on a Discord server that is open to the public. The
repository contains unit tests for various modules of PENROSE such as the compilers, optimizer,
and standard library functions. For end-to-end testing, we have built a benchmark suite of
diagrams in the PENROSE format. Our CI workflow runs a test script that renders all diagrams
in the suite and collects performance metadata. A sample of the output of the CI workflow can
be found in Appendix E and Appendix F. Test suites are integrated deeply within our DevOps
infrastructure. After each commit, GitHub Actions workflows run every test, render diagrams
from the benchmark suite, and collect performance data. In addition to testing, GitHub Actions
also deploy the PENROSE documentation site [46], an online IDE [84], and npm packages [139].

4.6.3 Open-source community
The PENROSE open-source project8 has already accumulated a sizable community, with around
7000 subscribers to our mailing list, over 1800 followers on X9, and over 400 members in the
PENROSE Discord server. The community consists of technical contributors, domain experts, and
end-users. To date, we are most successful at engaging software engineering contributors in the
community.

6https://penrose.cs.cmu.edu/blog/staged-layout
7https://penrose.cs.cmu.edu/docs/ref/substance/indexed-statements
8https://github.com/penrose/penrose
9https://x.com/UsePenrose

59

https://penrose.cs.cmu.edu/blog/staged-layout
https://penrose.cs.cmu.edu/docs/ref/substance/indexed-statements
https://github.com/penrose/penrose
https://x.com/UsePenrose

One example of such community effort is ProofWidgets, an extensible library of proof
visualization UI components. Using ProofWidgets in the Lean editor plugin, Lean users can
interact with domain-specific, reference-preserving visualizations (i.e., presentations) of elements
in Lean programs [131]. A notable example of such a visualization shipped10 in Lean mathlib4
is in Figure 4.30a, which builds on atop PENROSE and visualizes equalities of morphisms
in a category as a Penrose-generated commutative diagram with interactive labels that link
to expressions in the source program. In addition to commutative diagrams, ProofWidgets
also includes PENROSE-based widgets (plugins to the development environment that visualizes
the Lean proofs as domain-specific diagrams) for monodial categories, Euclidean geometry
(Figure 4.30b), and set theory (Figure 4.30c).

The marriage of Lean and PENROSE is enabled by the shared goal of extensibility based on
web technologies: PENROSE has a plain-text format and flexible JavaScript core designed to be
easily integrated other platforms, and ProofWidgets is designed to render any JavaScript-based
components. These design decisions led to simple integration at the technical level. The Lean
wrapper for PENROSE only imports the @penrose/core NPM package, and make a few API calls
to compile the PENROSE source. No additional glue code was needed. For example, the following
is an excerpt of the Lean code for the Euler diagram widget, where <PenroseDiagram/> is the
Lean wrapper for API calls to the JavaScript @penrose/core to compile, optimize, and render
the given PENROSE trio.

The first demo of ProofWidgets is built independently by the Lean community. The PENROSE

team took notice and reached out to collaborate on the first commutative diagram widget, which
required some additional features such as new arrowhead styles and staged layout. After the initial
contact, the rest of the community continued to build other domains (e.g., Euler diagrams for set
theory and Euclidean geometry diagrams) independently.

4.7 Limitations, Recent Developments, and Future Work
PENROSE has several limitations that make interesting topics for future work. In this section, we
discuss the system’s limitations in language expressiveness, layout optimization, and extensibility
in depth, and present possible directions for future work. This section also describes some
improvements to PENROSE since the publication of [191].

4.7.1 Language expressiveness
While we showed a wide range of domains that PENROSE can express in Section 4.5, the DOMAIN,
SUBSTANCE, and STYLE languages are limited in what they can express. Here we discuss some
limitations for each language:

DOMAIN Unlike theorem provers that formalize mathematics, the DOMAIN schema (Sec-
tion 4.3.1) in PENROSE only attempts to let user codify diagram-specific constructs for diagram-
ming. Therefore, type , predicate , and function are simplistic approximation of sorts, rela-

10https://github.com/leanprover-community/mathlib4/pull/3583

60

https://github.com/leanprover-community/mathlib4/pull/3583

tions, and operations in mathematics [7]. As an example, DOMAIN predicates captures mathe-
matical predicates [165] partially. Mathematical predicates often have important properties such
as reflexivity, transitivity, and symmetry. For instance, predicate SingleBond(Atom, Atom)
is symmetric, so SingleBond(H, O) should be equivalent to SingleBond(O, H) . However,
since PENROSE does not support symmetry, the following selector

1 forall Hydrogen H; Oxygen O
2 where SingleBond(O, H) { }

will not match the SingleBond(H, O) . Currently, symmetry for binary predicates is imple-
mented in PENROSE (symmetric predicate SingleBond(Atom, Atom)), but PENROSE still
does not support other mathematical properties such as transitivity.

The notation mechanism implemented as of [191] is a simple macro system that simply
replace tokens based on the specification. As a result, it is limited in the types of syntax extensions
it allows. For instance, Unicode operators such as ⊥ in

notation "v1 ⊥ v2" ∼ "Orthogonal(v1,v2)"

need to be defined and tokenized by the lexers in the PENROSE compiler. In addition, after the
tokens are defined manually, notation does not compose operators unambiguously due to
the lack of precedence and associativity in the specification. Currently, this syntax extension
mechanism remains unimplemented in PENROSE v4.0.0-alpha.3. A future full implementation
would let the user extend the compiler with new tokens and expressions, akin to the notation
mechanism in Coq.11

SUBSTANCE The design of SUBSTANCE presented in Section 4.3.2 does not capture some
common notational conventions in mathematics and many other STEM fields. notation in
DOMAIN lets users extend the syntax of SUBSTANCE with some limitations. However, these
syntax extensions do not systematically capture the types of conventions frequently demanded
by PENROSE users. Here we discuss the case of using one mathematical statement to imply
additional statements in SUBSTANCE. In the Euclidean geometry, a triangle is made up of 3 points,
3 line segments, and 3 interior angles. In traditional mathematics, once a triangle is constructed, it
is obvious that the points, segments, and angles can be used automatically. Instead, users have to
declare all of them in the Euclidean geometry domain (Section 4.5.3):

1 Point A, B, C
2 Triangle ABC := Triangle(A, B, C)
3 Segment AB := Segment(A, B)
4 Segment BC := Segment(B, C)
5 Segment CA := Segment(C, A)
6 Angle aABC := InteriorAngle(A, B, C)
7 Angle aBAC := InteriorAngle(B, A, C)
8 Angle aACB := InteriorAngle(A, C, B)
9 EqualLength(AB, BC)

11https://coq.inria.fr/doc/V8.19.0/refman/user-extensions/syntax-extensions.html

61

https://coq.inria.fr/doc/V8.19.0/refman/user-extensions/syntax-extensions.html

10 EqualAngle(aABC, aBAC)

Ideally, we want PENROSE to know that the segments, point, and angles should be created
automatically whenever a Triangle is initialized in SUBSTANCE. For example, Lines 1–2
should be sufficient to generate all of the angles and segments. To achieve this, the DOMAIN

writer effectively needs to encode this convention systematically. The DOMAIN notations do not
let the user perform string manipulation on the variable names such as generating aABC from
ABC . To systematically support notational conventions like this example, future work need to
consider expanding the notation mechanism, or introduce a more general specification format
for syntax extension and program transformations in DOMAIN.

In other examples, we observed that SUBSTANCE users sometimes wanted to declare a large
number of objects and needed to manually write many lines like so:

1 Node n0
2 Node n1
3 -- ...98 more nodes
4 Node n100
5 Edge e0 := MakeEdge(n0, n1)
6 Edge e1 := MakeEdge(n0, n2)
7 -- ...97 more edges
8 Edge e99 := MakeEdge(n0, n100)

Conceptually, the content of SUBSTANCE program can be stated mathematically as: a star spec-
tral graph with 101 nodes consists of a central node N0 and 100 peripheral nodes N1, N2, . . . , N100,
where the edge set is given by E = {(N0, Ni) : 1 ≤ i ≤ 100}. Therefore, we have added support
for sequences in SUBSTANCE12, which simplifies the program above to the following:

1 Node n_i for i in [0, 100]
2 Edge e_j := MakeEdge(n_0, n_j) for j in [1, 100]

SUBSTANCE sequences is a practical design decision that attempted to balance the naturalness
of the SUBSTANCE notation and its utility for diagramming. Future work will need to study
the limitations of SUBSTANCE more systematically, survey existing notational conventions, and
test design alternatives with users to extend SUBSTANCE to be more expressive and natural for
diagrammers.

12https://penrose.cs.cmu.edu/docs/ref/substance/indexed-statements

62

https://penrose.cs.cmu.edu/docs/ref/substance/indexed-statements

STYLE In the current version of PENROSE, authors can reuse geometric and layout primitives
(Section 4.3.3.6) to create new STYLE programs, and users consume these programs by writing
different SUBSTANCE programs with them. Each STYLE program is standalone and self-contained,
meaning that everything from the styling of points to the color palettes must be defined within
that program. In practice, this means that common visual design patterns are copied and pasted
both within and between STYLE files. Additionally, it is common for individual diagrams within
a domain to have customized visual elements to draw focus or illustrate a concept. Currently,
the only way to override the domain-wide visual style in PENROSE is by using workarounds
that involve more copying/pasting code in STYLE. These two limitations result in repetitive and
lengthy programs that require high effort to edit and maintain, even for expert PENROSE users.
For instance, examples in the geometry (Section 4.5.3) and meshes (Section 4.5.5) domains both
include circles with nearby text labels. In the current version of PENROSE, the user will need to
declare the circle, label, and constraints in every STYLE program like so:

1 const {
2 pointRadius = 4.0
3 labelPadding = 30.0
4 }
5 forall Point p {
6 p.icon = Circle { center: (?, ?) }
7 p.text = Equation { string : p.label }
8 ensure signedDistance(p.text, p.vec) == const.textPadding + const.pointRadius
9 }

PENROSE currently supports a fixed set of visual elements that roughly correspond to the primitives
supported by SVG.13 Further, STYLE does not support functions or custom objects. As a result, the
definition of “a circle with a nearby label around” must be re-declared not only for every STYLE

program, but also every occurrence within the same STYLE program. Currently, proposals include
adding a generic object type for reusing shape properties and allowing function declarations in

13https://penrose.cs.cmu.edu/docs/ref/style/shapes-overview

63

STYLE.14 Future work will need to explore design alternatives to allow better reusability and
parametrization of shapes properties and STYLE selector blocks.

Another source of verbosity in STYLE is the lack of support for iteration and collections. For
instance, within a selector block, STYLE writers have no choice but to repeat statements for some
common graphics operations. For instance, in an reproduction of the dinoshade (a common
OpenGL/GLUT example) using PENROSE, the STYLE writer had to repeat the declaration of the
99 faces of the dinosaur geometry:

1 -- from dinoshade.style
2 -- compute the color for the first polygon
3 vec3 C0 = (ambient + (1-ambient)*max(0, dot((N[0][0],N[0][1],N[0][2]),L))) * D.

skinColor
4
5 -- draw the first polygon
6 shape f0 = Polygon {
7 points: [(p[0][0],p[0][1]), (p[1][0],p[1][1]), (p[2][0],p[2][1]), (p[3][0],p

[3][1])]
8 fillColor: rgba(C0[0], C0[1], C0[2], D.alpha)
9 strokeColor: D.wireColor

10 strokeWidth: wireWidth
11 ensureOnCanvas: false
12 opacity: max(.2, -cross2D((p[1][0],p[1][1])-(p[0][0],p[0][1]), (p[2][0],p

[2][1])-(p[0][0],p[0][1])))
13 }
14 vec3 C1 = (ambient + (1-ambient)*max(0, dot((N[1][0],N[1][1],N[1][2]),L))) * G.

skinColor
15 shape f1 = Polygon {
16 points: [(p[1][0],p[1][1]), (p[4][0],p[4][1]), (p[5][0],p[5][1]), (p[2][0],p

[2][1])]
17 fillColor: rgba(C1[0], C1[1], C1[2], G.alpha)
18 strokeColor: G.wireColor
19 strokeWidth: wireWidth
20 ensureOnCanvas: false
21 strokeLinejoin: "round"
22 opacity: max(.2, -cross2D((p[4][0],p[4][1])-(p[1][0],p[1][1]), (p[5][0],p

[5][1])-(p[1][0],p[1][1])))
23 }
24 -- ...97 more declarations of polygons

14https://github.com/penrose/penrose/issues/924

64

https://github.com/penrose/penrose/issues/924

The STYLE writer, Keenan Crane, summarizes this issue well in the README document for this
example15:

An even bigger blemish [of STYLE] (in this case a really big one!) is that there is
currently no way to emit a list of shapes, such as a list of Polygons, given a list of in-
dices into a point list—as with standard OpenGL mechanisms like glDrawArrays().
Moreover, STYLE has no looping semantics that would enable us to draw one polygon
at a time from a list, a la “immediate mode” in legacy OpenGL. Instead, we need
to draw the polygons explicitly, one at a time, resulting in an extremely long Style
program!

Indeed, dinoshade.style has 1190 lines of code, 999 of which are repeated Polygon declara-
tions. Therefore, future work should explore designs of iterations and collections to STYLE to
improve its expressiveness.

4.7.2 Layout Optimization
The cost of optimization is the biggest bottleneck in our pipeline, as seen in Section 4.5.8, which is
not surprising given that PENROSE currently use a “catch-all” solver. As described in Section 4.4.2,
the layout optimizer attempts to reduce a global energy at every optimization step (Equation 4.2).
This approach, while flexible and general, imposes a high computational demand on the optimizer,
as it includes all degrees of freedom and energy terms in the same layout problem for the optimizer
to solve. In practice, we observed that certain layout problems can be decomposed into smaller
ones, and solving smaller layout problems sequentially can improve the optimizer’s performance
and solution quality. For instance, consider a diagram depicting the incenter16 of a triangle in the
Euclidean geometry domain:

15https://github.com/penrose/penrose/tree/main/packages/examples/src/dinoshade
16The incenter of a triangle is the point where the three angle bisectors intersect. It is equidistant from all sides of

the triangle, and serves as the center of the incircle, the circle that is tangent to all three sides of the triangle.

65

https://github.com/penrose/penrose/tree/main/packages/examples/src/dinoshade

1 Point J, K, L, P, m
2 Let JKL := Triangle(J, K, L)
3 Incenter(P, JKL)
4 Let KL := Segment(K, L)
5 Collinear(K, m, L)
6 Let PLM := Triangle(P, L, m)
7 Angle PML := InteriorAngle(P, m, L)
8 RightMarked(PML)
9 AutoLabel J, K, L, P, m

Conceptually, this diagram illustrates the incenter P of4JKL, where P is equidistant from
the triangle’s sides. The layout problem can be broken down into:

• Lay out points J , K, and L to form a non-degenerate triangle, a triangle where all three
sides have positive length and no angle is 0 degrees.

• Compute the location of the incenter P of4JKL.
• Lay out point m on KL.
• Lay out mP perpendicular to KL.
• Lay out all point labels so they are close to the points.
• If the label is for a triangle vertex, make sure it’s outside of the triangle.

Aside from the location of P , everything else is optimized. The current PENROSE optimizer
attempts to achieve all of the above concurrently. As a result, PENROSE will try to keep the labels
close to the points in every frame of the layout animation. This led to slow layout optimization
and visually worse layouts at times.

In practice, we observed that when using WYSIWYG tools to draw diagrams, diagrammers
often lay out parts of a diagram before others. Inspired by this observation, we implemented
layout stages in PENROSE to let diagrammers decompose the layout problem in STYLE into
consecutive stages that comprise of subsets of the degrees of freedom and constraints. The layout
stages are optionally defined at the top level as a list of names in Style:

layout = [shape, label, overall]

In Style blocks, inputs and constraints can be associated with stages via the in and except
keywords.

1 -- ‘a‘ can be altered by the layout engine in the ‘shape‘ stage
2 a = ? in shape
3 -- ‘b‘ can be altered in both ‘shape‘ and ‘overall‘ stages
4 b = ? in [shape, overall]
5 -- this is equivalent to above

66

6 c = ? except label
7 -- if not specified, a variable participates in all stages
8 d = ? in [shape, label, overall]
9 e = ?

10 -- the same thing can be done to constraints and objectives
11 ensure a == 20 in shape
12 encourage c > 20 except label

Using layout stages, we rewrote the Euclidean geometry STYLE program to stage shape layout
before label layout, and observed better performance and layout quality in practice. However,
exposing staging at the language level also introduces some potential pitfalls. For instance, one
may write a staging Style that’s impossible to optimize for. Notably, this issue is not unique to
layout stages. In general, it’s possible to specify unsolvable layout problems in STYLE. Future
work need to experiment with detecting infeasible layout specification in general. In addition,
as discussed in Section 4.5.8, the computational graph associated with the layout problem may
provide opportunities for automatically staging the layout problem and employing accelerations
such as Barnes-Hut [9] for all-pairs in the layout optimizer.

4.7.3 Extensibility
The plugin mechanism is designed to let PENROSE users leverage external code. The implementa-
tion of the design presented in Section 4.4.3 executes Shell scripts from the Haskell core. Since
the rewrite of PENROSE to TypeScript in 2020, this feature is no longer supported since this exact
implementation would not work in web browsers. A practical limitation of the plugin approach
is that PENROSE users need to install local dependencies and write the necessary glue code to
connect the external programs (e.g. a regular expression parser for light path expressions in
Section 4.5.617) to PENROSE. Recognizing this limitation, future work may consider an alternative
in which the PENROSE languages are embedded in the ecosystem of another host language, i.e.,
embedded domain-specific languages (EDSLs). By relying on the host language’s module system
and package ecosystem, PENROSE code can then be interleaved with calls to external programs
more seamlessly. This approach may improve the portability of PENROSE diagram with plugins.
An early experiment of a PENROSE EDSL in TypeScript, BLOOM, has been released18 but is out
of the scope of this dissertation.

4.7.4 Accessibility
It is important to specifically build diagramming tools for user communities with different abilities.
While our existing work does not target making accessible diagrams nor make diagramming tools
for accessible, we believe the PENROSE system architecture is well-suited to be extended to help
build more accessible diagrams and diagramming tools. Here we highlight some opportunities we
identified for future work:

17https://github.com/penrose/penrose/blob/416c29abe8c7265a302f53153132327154335ce2/
examples/plugins/regex/regex.py

18https://penrose.cs.cmu.edu/blog/bloom

67

https://github.com/penrose/penrose/blob/416c29abe8c7265a302f53153132327154335ce2/examples/plugins/regex/regex.py
https://github.com/penrose/penrose/blob/416c29abe8c7265a302f53153132327154335ce2/examples/plugins/regex/regex.py
https://penrose.cs.cmu.edu/blog/bloom

• Alt text (spatially localized). Currently, the primary mechanism for supporting blind
use of images on the internet is via “alt text,” which is a natural language description of
the image that can be easily processed by a screen reader. Unfortunately, standard alt
text does not allow blind users to take advantage of their spatial reasoning capabilities.
PENROSE may auto-generate the standard alt text based on the input SUBSTANCE program.
In addition, since we know what every shape in the diagram represents in the underlying
content, PENROSE may provide localized tooltips that allow users to navigate a diagram
with rich annotations (Figure 4.32).

• Aural and tactile feedback. — For vision-impaired users, spatial diagrams can also be
rendered via audio or tactile cues rather than visual mechanisms. We have prototyped a
compilation path that enables audio to be associated with any class of mathematical object19,
and future work should explore and expand this capability.

• Language localization. — The standard mechanism for language localization on the web
is for the website author to write versions of each segment of text on the page in every
language they want to target. The same text in different languages takes more or less space,
but standard text on the web is responsive by default, so the page layout usually looks
reasonable in any language. However, the same is not true for diagrams. If you change a
label in a standard diagram, all of the shapes remain in place. This can mean that the labels
can be misunderstood or hard to even see. Since PENROSE optimizes diagram layouts,
one may produce different layouts for each language that appropriately sized labels in that
language (Figure 4.31).

4.8 Summary
Effectively communicating mathematical ideas remains a major challenge for students, educators,
and researchers alike. In this chapter, we discussed, PENROSE, a step toward understanding
the abstractions needed to build general-purpose diagramming tools that connect a concise
specification of mathematical content with powerful tools for visual synthesis. We showed that
centering the design around mappings from logical to visual objects leads to a system that is both
flexible and scalable. Moreover, providing a clean separation between content and presentation
lays a foundation for meaningful interaction techniques for making diagrams. In the next chapter,
we will present an application of PENROSE in the education domain.

19see the penrose-sound example for an early experiment

68

https://github.com/penrose/penrose/tree/main/packages/examples/src/penrose-sound

24:8 An Extensible User Interface for Lean 4

Figure 4 A target type in the language of category theory is selected. The statement is displayed
as a sequence of commutative diagrams connected by implication arrows.

@[widget_module]
def PenroseDiagram : Component PenroseDiagramProps where

javascript := . . . -- Details omitted

Values of type Component Props serve to encapsulate JavaScript user widget implemen-
tations as Lean definitions. The index type Props specifies a Lean encoding of the type of
data expected by the component. In this case Props = PenroseDiagramProps contains fields
describing a specific diagram (dsl/sty/sub) as well as other widgets to nest within it (embeds).
To give another example, one variant of the interactive expression component has type
Component ExprWithCtx where ExprWithCtx is an expression together with its local context.

The field javascript contains a JavaScript implementation of the component. To a first
approximation, it could be viewed as having dynamic type Props æ HTML. It may be written
inline but it is preferrable to point at a file on disk. In the latter case one may use tooling
we have developed to integrate building TypeScript files into the build of a Lean package
using the Lake (Lean Make) build system. Communication with the infoview is set up using
the @[widget_module] attribute and the deriving RpcEncoding annotation. @[widget_module]
saves the JavaScript code in a global storage from which it can be retrieved for execution
in the infoview, whereas deriving RpcEncoding generates code to serialize and deserialize
values of a type, in this case PenroseDiagramProps. This is necessary to support distributed
computation (see Section 4).

More complex visualizations are enabled by building on further JavaScript libraries as in
Figure 5. For example, a component integrating a plotting library could be a starting point
for plotting functions in a formally verified way [34]. Finally, we note that this first step
of wrapping JavaScript functionality in a Component can be skipped when the necessary UI
component already exists. Thus it is desirable to write reusable components. For instance,
PenroseDiagram is not specific to algebra but supports general constraint-based diagramming;
we use it again in Figure 7.

In the second step, we write a Lean metaprogram to display the user widget. There are
many ways to do this in general. Since Figure 4 uses an Expr presenter, we will describe
this approach. Like most provers, Lean features an elaborator which translates surface-level
(vernacular) syntax into fully explicit terms of the underlying type theory by filling in

(a) A target type in the language of category theory is selected. The statement is displayed as a sequence of commutative diagrams connected by
implication arrows. This diagram is generated with PENROSE.

(b) A widget for Euclidean geometry proofs independently developed by the Lean community. On top of the PENROSE-generated geometry
diagram, the proof widget provides code actions (“insert”) for generating code in the Lean source program to complete the proof.

(c) A proof of the transitive property of subset relations in Lean with an Euler diagram generated from the hypotheses. In this case, the user is
trying to prove R ⊆ U given S ⊆ U and R ⊆ S. Selecting the hypotheses shows the goal visually. Toggling the irrelevant condition T ⊆ U will
show that it has no effect on the result of the goal visually.

Figure 4.30: Various diagrams generated with PENROSE and widgets for Lean proofs: (a) commutative diagrams in
category theory, (b) Euclidean geometry proof widget, and (c) Euler diagram for subset relations.

69

animals

life

monera

fungi

plants
protista

birds

mammals

fish
insects

TiereLebewesen

Monera

PilzeBepflanzung

Protista

Vögel

Säugetiere

Fische

Insekten

動物

生体

モネラ

菌類植物

原生生物

鳥

哺乳類

魚

昆虫

JAPANESE ENGLISH GERMAN

Figure 4.31: PENROSE may provide automatic re-layout for different diagram localizations. For instance, the longer
words found in German take up more space than the shorter words found in Japanese—requiring a substantially
different layout. Performing new layouts by hand for each language can be time consuming, meaning that diagrams
for other languages are often omitted or left un-translated.

-- First column of `A` [a_1.data]

-- Second column of `A` [a_2.data]

-- Example vector in space [v.data]

-- Matrix with `a_1` and `a_2` as columns

 [A.data]

-- `v` transformed by `A`

Vector a_1

Vector a_2

Vector v

Matrix A := columns(a_1, a_2)

Vector Av = multiply(A, v)

AutoLabel All

v transformed by A

v: Example vector in space

A: Matrix with a1 and a2 as columns

v transformed by A

v: Example vector in space

A: Matrix with a1 and a2 as columns

Figure 4.32: Diagrams often use symbols and abstract shapes and can be hard to understand. This figure is a mock-up
of a lightweight markup language in the form of SUBSTANCE comments: the markup language has a markdown-like
syntax, but allows splices of SUBSTANCE variables and runtime values. The mock-up shows a user interface that
automatically display a tooltip stack that explains what each shape represents.

70

Chapter 5

EDGEWORTH: Diagrammatic Problem
Authoring at Scale1

In which of the following diagrams are
∆CED and ∆AED congruent?

Correct!

Which of the following equations
correspond to the plot?

0

2

4

6

8

10

0.25 0.50 0.75
Amount (dollars)

D
is

ta
nc

e
(m

il
es

)

Figure 5.1: left: a translation problem that helps students discern the structure of linear equations (adapted from [91]).
right: an EDGEWORTH generated problem that trains student to recognize diagram configurations [96] for triangle
congruence.

5.1 Introduction
Effective use of visual representations requires a certain level of representational fluency that’s
achievable through deliberate practice and repetition [45, 130]. Recognizing how words, symbols,

1This chapter is adapted from Sections 1 to 5 of “Edgeworth: Efficient and Scalable Authoring of Visual Thinking
Activities” [133].

71

32
Diagram Mutation

41

Figure 5.2: EDGEWORTH is a diagrammatic problem authoring tool that automatically generates diagram variations
from a single diagram: the author creates an example diagram (1), then EDGEWORTH generates a myriad of diagram
variations (2), from which the author selects diagrams (3) to form a diagrammatic multiple choice problem (4).

and diagrams relate to each other is an important first step of achieving fluency. Prior work
has shown that these contrasting cases, i.e., discrimination and mapping, among representations
significantly improve students’ ability to translate among representations [90].

To train students’ representational fluency, educators often create problem sets that involve
numerous contrasting cases of a particular visual representation. For instance, Figure 5.1 shows
two examples of translation problems, where the problem asks students to determine diagrammatic
examples and counterexamples of a textual description and vice versa. Importantly, these examples
and counterexamples have varying degrees of differences from the given diagram or text, and
carefully picking examples on this spectrum has a big impact on learning [114].

Traditionally, educators author visual practice by drawing diagrams by hand. In formative
interviews (Section 5.2), educators reported the vital role of visual practice in their instruction,
but noted the tedium of authoring due to tool limitations, leading to fewer diagrams used than
desired. Manual authoring can hardly keep up with the growth of STEM learners and demand for
more visual practice.

As a first step towards scaling up visual practice authoring, we built EDGEWORTH, a dia-
grammatic problem generator. EDGEWORTH generates translation problems, an effective type of
visual practice [90] that ask students to determine diagrammatic examples and counterexamples
of a textual/symbolic description (Figure 5.1). To help authors get the most out of one diagram,
EDGEWORTH contributes a “build once, generate many” authoring paradigm: Instead of manually
editing diagrams to get variations, the author creates a single diagram and EDGEWORTH automati-
cally generates diagram variations (Figure 5.2 1 2). The interaction design of EDGEWORTH

allows the author to visually select diagram variations to rapidly form translation problems (Fig-
ure 5.2 3 4). Given the diversity of instructional contexts in STEM, we designed EDGEWORTH

to be domain-agnostic: it uses a generic program mutation technique (Section 5.3.3) to change the
author-provided diagram to produce variations.

In this chapter, we discuss formative interviews that drove the design of EDGEWORTH and
then walk through the technical implementation of EDGEWORTH.

72

5.2 Formative interview

We conducted semi-structured interviews with 6 educators to understand how they author, use,
and maintain diagrammatic problems. We recruited participants based on their background in
education and usage of diagrams in their work. Selected participants work as secondary school
teachers, university professors, teaching assistants, and competitive math coaches. All participants
(P1–6) indicated that they have experience creating instructional material, authoring problems,
and/or developing online courses that include visual content. Example interview questions include
what roles diagrams play in the participant’s educational materials, how students interact with
diagrams, and how diagrams are authored and maintained. The full interview protocol is included
in Appendix G.

Participants reported the usage of diagrams to build conceptual understanding and emphasized
the need for deliberate practice to acquire representational fluency. Traditional educational
materials, especially in higher education, tend to emphasize “procedures, memorization, and
symbolic manipulation” (P6). Similarly, teachers such as P1 suffer from “the curse of knowledge”
of teaching visual fluency: while teachers have internalized how to use visuals, they tend to “under-
train” students and students therefore struggle to use visuals for problem-solving. As a result,
students often become “symbolically good” and do not develop “good conceptual understanding”
(P3). Visuals like diagrams and graphs provide alternative representations that help students
“develop intuition” (P3) and “become better problem-solvers” (P4). To improve their instruction,
all of our participants (P1–6) attempt to incorporate more diagrams than they currently have in
their instructional materials. Some also ask students to draw, annotate, and explain diagrams
(P1, P2, P6). P2 encourages students to learn “multiple representations” and makes diagrams
central to their math and programming curricula. When students practice with diagrams, teachers
also gain a richer assessment on students’ level of understanding, and “learned more from this
[student-drawn diagram] than 10 similar problems without the pictures” (P6).

Despite the widespread agreement among participants about the benefits of and need for
diagrammatic practice, participants reported that tool limitations led to manual and repetitive
authoring experience. Our participants therefore face a trade-off when authoring visual content:
more visuals are beneficial for learning but are time-consuming to create and modify. When
authoring practice problems, P1 struggled to “create simple shapes by myself ” and always ended
up repeatedly “copy-pasting and searching online”. Similarly, P6 reported that they “get online
images for pre-made resources, but whenever I want something a little custom, it’ll take a lot
of time.” To streamline the visual authoring process, P2 and P5 developed custom pipelines
for authoring problem sets and quizzes using existing programming tools. Like the problems
described by prior research on diagramming tool usability [113], these tools often lack support for
“high-level tweaking of my diagrams” (P2) and “are a pain to use because the language is not
semantic and hard to use for non-programmers” (P5). Participants showed us many examples of
tedious changes necessary to create diagram variations.

From the results, we derived the following design requirements for tool design to address
participants’ needs:

D1 Address the need for practicing representational fluency

D2 Simplify the workflow for generating diagram variations

73

D3 Obviate the need to attend to low-level diagramming details

5.3 System Design of EDGEWORTH

EDGEWORTH realizes the design goals from Section 5.2 by: 1) providing a domain-agnostic
workflow for rapidly authoring diagrammatic practice problems (D1), 2) automatically suggesting
numerous diagram variations of a single example diagram and allowing the author to visually
select from the variations (D2), and 3) fully automating the layout for all diagram variations (D3).
Figure 5.3 walks through the user interface of EDGEWORTH, that encapsulates the ideas above.

In Section 5.3.1, we demonstrate the workflow of EDGEWORTH by showing how to author
an example diagrammatic problem in Euclidean geometry. We then describe EDGEWORTH’s ap-
proach to diagram layout in Section 5.3.2 and how it generates diagram variation in Section 5.3.3.

5.3.1 Author Workflow
In this section, we use an example from high school geometry to demonstrate the process of
creating a problem in EDGEWORTH, the user interface of which is annotated in Figure 5.3.

5.3.1.1 Create an example diagram

The author wants to write a problem about triangle congruence to assess students’ understanding
of the Side-Angle-Side (SAS) rule. They want to create a translation problem including one
diagram where the SAS rule is satisfied and three others where it is not. The author first describes
an example diagram in the SUBSTANCE language (Figure 5.3 b , Section 4.3.2) where this rule
is satisfied after selecting a combination of STYLE and DOMAIN programs for a diagramming
domain. They construct a scenario involving two triangles: 4DEC and4DEA share one side
DE and have two equal sides EC and EA. ∠CEB indicates that AC and BD are perpendicular
and therefore ∠DEC = ∠DEA. Therefore,4DEC and4DEA are congruent by the SAS rule.
Given this description, EDGEWORTH lays out the diagram automatically (Figure 5.3 f).

Original diagram Mutated diagram #1 Mutated diagram #2

Mutated diagram #3 Mutated diagram #4 Mutated diagram #5

Mutated diagram #6 Mutated diagram #7 Mutated diagram #8

Mutated diagram #9 Mutated diagram #10

Pick a Domain

Preset

Prompt:
In which of the following diagrams are triangles an

 congruent?

Mutator seed:

Number of variations to generate:

Delete
20%

Edit
80%

Geometry

GENERATE NEW PROBLEM SELECT FROM PRESETS

c04p01: Congruent triangles

△DEC

△DEA

Input Scenario

Point A, B, C, D, E
Let AE := Segment(A, E)
Let EC := Segment(E, C)
Let AB := Segment(A, B)
Let BC := Segment(B, C)
Let CD := Segment(C, D)
Let DA := Segment(D, A)
Let ED := Segment(E, D)
Let EB := Segment(E, B)
Collinear(A,E,C)
Collinear(B,E,D)
Angle r := InteriorAngle(B,E,C)
EqualLength(ED, EB)
EqualLength(AE, EC)
EqualLengthMarker(AE, EC)
RightMarked(r)
AutoLabel A, B, C, D, E

test2

1 10 20 30 40 50

GENERATE VARIATIONS

Mutations per variation:

Advanced options

Domain Program

Style Program

Add Statements

Edit Statements

Delete Statements

1 5

EDGEWORTH 0 diagrams selected EXPORT SHOW PROBLEM

5.3.1.2 Select from EDGEWORTH-generated diagrams

Now the author can use EDGEWORTH to mutate the example diagram by clicking “Generate
Variations” (Figure 5.3 e). EDGEWORTH performs mutations on the example scenario and

74

Or
ig
in
al
 d
ia
gr
am

Mu
ta
te

d
di
ag
ra
m
#1

Mu
ta
te
d
di
ag
ra
m
#2

Mu
ta
te
d
di
ag
ra
m
#3

Mu
ta
te

d
di
ag
ra
m
#4

Mu
ta
te
d
di
ag
ra
m
#5

Mu
ta
te
d
di
ag
ra
m
#6

Mu
ta
te

d
di
ag
ra
m
#7

Mu
ta
te
d
di
ag
ra
m
#8

Pi
ck

 a
 D

om
ai

n

Pr
es

et

Pr
om

pt
:

In
 w

hi
ch

 o
f t

he
 fo

llo
w

in
g

di
ag

ra
m

s
ar

e
tri

an
gl

es

 a
n

 c
on

gr
ue

nt
?

M
ut

at
or

 s
ee

d:

N
um

be
r o

f v
ar

ia
tio

ns
 to

 g
en

er
at

e:

D
el

et
e

20
%

Ed
it

80
%

G
eo

m
et

ry

G
EN

ER
AT

E
N

EW
 P

R
O

BL
EM

SE
LE

C
T

FR
O

M
 P

R
ES

ET
S

c0
4p

01
: C

on
gr

ue
nt

 tr
ia

ng
le

s

In
pu

t S
ce

na
rio

Po
in

t
A,

B,
C,

D,
E

Le
t

AE
:=

Se
gm

en
t(

A,
E)

Le
t

EC
:=

Se
gm

en
t(

E,
C)

Le
t

AB
:=

Se
gm

en
t(

A,
B)

Le
t

BC
:=

Se
gm

en
t(

B,
C)

Le
t

CD
:=

Se
gm

en
t(

C,
D)

Le
t

DA
:=

Se
gm

en
t(

D,
A)

Le
t

ED
:=

Se
gm

en
t(

E,
D)

Le
t

EB
:=

Se
gm

en
t(

E,
B)

Co
ll

in
ea

r(
A,

E,
C)

Co
ll

in
ea

r(
B,

E,
D)

An
gl

e
r

:=
In

te
ri

or
An

gl
e(

B,
E,

C)
Eq

ua
lL

en
gt

h(
ED

,
EB

)
Eq

ua
lL

en
gt

h(
AE

,
EC

)
Eq

ua
lL

en
gt

hM
ar

ke
r(

AE
,

EC
)

Ri
gh

tM
ar

ke
d(

r)
Au

to
La

be
l

A,
B,

C,
D,

E

te
st

2

1
10

20
30

40
50

G
EN

ER
AT

E
VA

R
IA

TI
O

N
S

Ad
va

nc
ed

 o
pt

io
ns

ED
GE

WO
RT

H
2

di
ag

ra
m

s
se

le
ct

ed
EX

PO
RT

SH
O

W
 P

R
O

BL
EM

D
EA

D
EC

Ad
va

nc
ed

 o
pt

io
ns

D
om

ai
n

Pr
og

ra
m

St
yl

e
Pr

og
ra

m

Ty
pe

s

C
on

st
ru

ct
or

s

Fu
nc

tio
ns

Pr
ed

ic
at

es

Ad
d

St
at

em
en

ts

Tr
ia

ng
le

Po
in

t
An

gl
e

Se
gm

en
t

M
kS

eg
m

en
t

M
kM

id
po

in
t

In
te

rio
rA

ng
le

M
kT

ria
ng

le

Bi
se

ct
or

M
id

Se
gm

en
t

Al
l

Ed
it

St
at

em
en

ts

D
el

et
e

St
at

em
en

ts

�

�

� �

�

�

�
�

�

� Fi
gu

re
5.

3:
T

he
us

er
in

te
rf

ac
e

of
E

D
G

E
W

O
R

T
H

.T
he

au
th

or
fir

st
pr

ov
id

es
a

te
xt

ua
lp

ro
m

pt
(

a
)a

s
an

in
pu

ts
ce

na
ri

o
in

S
U

B
S

TA
N

C
E

no
ta

tio
n

(
b

).
T

he
n,

cl
ic

ki
ng

“G
en

er
at

e
V

ar
ia

tio
ns

”
(

e
)g

en
er

at
es

th
e

sp
ec

ifi
ed

nu
m

be
ro

fd
ia

gr
am

va
ri

at
io

ns
(

d
)a

tr
an

do
m

ba
se

d
on

a
st

ri
ng

se
ed

an
d

w
ei

gh
ts

on
A

dd
,D

el
et

e,
or

E
di

tm
ut

at
io

ns
(

c
).

In
th

e
di

ag
ra

m
pa

ne
l,

th
e

to
p-

le
ft

di
ag

ra
m

(
f

)
co

rr
es

po
nd

s
to

th
e

in
pu

ts
ce

na
ri

o
an

d
th

e
re

st
ar

e
di

ag
ra

m
va

ri
at

io
ns

ge
ne

ra
te

d
by

E
D

G
E

W
O

R
T

H
.T

he
au

th
or

ca
n

vi
su

al
ly

se
le

ct
di

ag
ra

m
s

(
g

)t
o

as
se

m
bl

e
a

di
ag

ra
m

m
at

ic
m

ul
tip

le
-c

ho
ic

e
pr

ob
le

m
(

h
).

If
ne

ed
ed

,t
he

au
th

or
ca

n
fin

e-
tu

ne
th

e

m
ut

at
or

us
in

g
“A

dv
an

ce
d

op
tio

ns
”

(
i

j
).

75

generates a grid of diagram variations, i.e., diagrams that differ from the example scenario in
their content2. The grid is designed to give the author an overview of the mutation results, and
diagrams are prominent in each cell to facilitate faster visual selection. The top-left cell in the
grid will always display the original example diagram (Figure 5.3 f), and the rest correspond to
mutation results.

By inspecting each diagram in the grid, the author can determine if it is a good fit for their
translation problem. If so, they click the top-right checkbox (Figure 5.3 g) to include the diagram
in the problem.

5.3.1.3 Preview and export the problem

After the author picks a sufficient number of diagrams (4 in this case), they can preview the
translation problem by clicking “Show Problem” (Figure 5.3 h), which displays an interactive
multiple-choice widget. If the author is satisfied, they can click “Export” to download the
diagrams and metadata to use the problem in their context. EDGEWORTH exports to Scalable
Vector Graphics (SVG) images for static media, source programs for interactive use, and detailed
mutation trace metadata for comprehensive analysis and reference purposes.

5.3.2 Diagram Notation and Layout

EDGEWORTH is built on PENROSE (Chapter 4). Compared with alternatives, PENROSE offers two
distinct advantages: (1) a high-level diagram notation and (2) an automatic layout engine. As dis-
cussed in Chapter 4, a diagram in PENROSE consists of a textual description of the diagram content
(SUBSTANCE) and a reusable layout stylesheet (STYLE). As a reminder of how the SUBSTANCE

language works, Figure 5.4 shows the three kinds of SUBSTANCE statements: type statements
(e.g., Carbon c) declare new objects; constructors (Bond b1 := SingleBond(c, cl1)) create
new objects from existing objects; and predicates (ZeroDots(c)) indicate relations among objects.

Carbon c

Oxygen o

Chlorine cl1, cl2

Bond b1 := SingleBond(c, cl1)

Bond b2 := SingleBond(c, cl2)

Bond b3 := DoubleBond(c, o)

ZeroDots(c)

FourDots(o)

SixDots(cl1)

SixDots(cl2)

C

Cl

Cl

O

Figure 5.4: Diagram and SUBSTANCE notation for the Lewis structure of phosgene (COCl2).

The current EDGEWORTH implementation builds on PENROSE’s geometry, chemistry, and
graph STYLE for diagram layout. Since the existing STYLE stylesheets are primarily used
to generate a few human-written examples, they lack coverage for variations of SUBSTANCE

2Note that variations and distinct from alternate layouts, as they are different SUBSTANCE programs.

76

descriptions required by EDGEWORTH. To this end, we improved STYLE, made new diagram
examples, and added new standard library functions to PENROSE to accommodate EDGEWORTH.

EDGEWORTH is the first application of PENROSE that concurrently optimizes and renders a
grid of multiple diagrams. Therefore, we have made significant updates to PENROSE to support
EDGEWORTH’s use case. To make EDGEWORTH a performant client-side web application for
interactive use, we have migrated from Haskell to TypeScript and made various performance
improvements to efficiently run tens of layout optimization jobs in a single session. Compared to
the state of PENROSE at the publication of Ye et al. [191], the development of EDGEWORTH has
helped improve the performance of the system by 100×.

5.3.3 Program Mutation

EDGEWORTH generates diagram variations by mutating the example diagram written in SUB-
STANCE. We purposely designed the system to include a small set of simple mutation operations.
Since compilation errors in SUBSTANCE will not produce diagrams, all of the mutations are
type-safe. Similar to generic tree-editing algorithms [56], EDGEWORTH supports 3 kinds of
mutation operators: Add, Delete, and Edit.

Add appends a statement. Delete removes a statement and all other statements that refer to
the original statement. Edit modifies a statement. There are several categories of Edit operations.
Each Edit category contains a guard and an action. The guard checks if the operator is applicable
to the given SUBSTANCE statement, and the action performs the mutation. For instance, Replace
Arguments is only applicable when the current context has existing variables of the desired type.
• Swap Arguments reorders the arguments passed into a statement; e.g., if A and B are

Triangle s:
Similar(A, B) → Similar(B, A)

• Replace Arguments replaces the arguments passed into a statement with other arguments
defined in scope; e.g., if A, B, C, D are Point s:
s := MkSegment(A, B) → s := MkSegment(C, D)

• Replace Function replaces a statement with a different statement that takes the same arguments;
e.g., if T is a Triangle and E is an Angle :
Equilateral(T) → Scalene(T)

Segment s := Bisector(E) → RightAngleMarked(E)

Algorithm 1 shows how the EDGEWORTH mutator works, at a high level. In addition to the
input SUBSTANCE description p, EDGEWORTH also takes a number of user-defined configuration
parameters: (1) a number of variations to generate (the number of times GENERATE is called);
(2) a range of mutation counts per variation (the input variables ` and h), i.e., total number of
mutations performed on the given SUBSTANCE description; (3) weights between 0 and 1 for the
probabilities of picking Add, Delete, or Edit operations for every mutation (the input variables
a, d, and e respectively); and (4) filter sets A, D, and E which limit the set of mutations that the
Add, Delete, and Edit operations can produce.

Given an example diagram, EDGEWORTH performs several rounds of mutation generation.
Each round results in a series of mutations that alter the input to produce a variation. The number

77

Algorithm 1 The EDGEWORTH mutation algorithm.
1: function GENERATE(p, `, h, a, d, e, A,D,E)
2: p′ ← p
3: n← uniform random integer between ` and h
4: for i from 1 to n do
5: x← uniform random real between 0 and a+ d+ e
6: if x < a then
7: m← RANDOMADD(A, p′)
8: else if x < a+ d then
9: m← RANDOMDELETE(D, p′)

10: else
11: s← uniform random element of STATEMENTS(p′)
12: m← RANDOMEDIT(E, s)
13: end if
14: p′ ← MUTATE(p′,m)
15: end for
16: return p′

17: end function

of mutations (line 3) is bounded by the configuration parameters.
To generate a single mutation, EDGEWORTH makes a weighted choice (line 5) of the mutation

kinds and enumerates all possible mutations for the chosen kind: Add enumerates all possible
statements to add (line 7); Delete randomly deletes an existing statement (line 9); Edit enumerates
all possible edits for all statements (line 11) and picks one of them randomly (line 12). The
randomness of EDGEWORTH is controlled by a single random generator seed.

Users can specify filter sets under the “Advanced options” section of the UI, shown in
Figure 5.3 i j . The filters default to “All,” which indicates that the mutator may change any
statement in the example diagram. While these precise configuration options may be useful, we
ended up not using them in our evaluation (Chapter 6) and instead achieving our results using only
EDGEWORTH’s simpler core set of configuration options, i.e., weights a, d, and e on mutation
operators in Algorithm 1. In Sections 5.4.2 to 5.4.4, we discuss the weight configurations for each
domain implemented in a translation problem dataset.

5.4 Translation Problem Dataset

EDGEWORTH’s mutation-based approach is domain-agnostic: it simply applies generic program
mutations on any SUBSTANCE program. Through collecting a dataset of translation problems in
Euclidean geometry, general chemistry, and discrete mathematics, we evaluate if this approach is
expressive enough for different instructional contexts in STEM. We selected these three domains
because they have wide audiences in K-12 and higher education, making them rich sources for
existing instructional material. Each domain also has a canonical visual representation that is
explicitly taught to students. Therefore, students can benefit from visual practice in these domains.

78

We choose problems from existing textbooks [155, 78] or online courses [137] and follow
the procedure outlined in Section 5.3.1 to recast each problem. All problems are included in
Appendix H.

5.4.1 Summary Statistics

We reproduced 31 problems in total from existing textbooks [155, 78] or online courses [137].
Since creating the example diagram (Section 5.3.1.1) took the most time in this process, we report
statistics on the example diagrams here.

On average, EDGEWORTH’s diagram notation (i.e., the SUBSTANCE language) is compact
and simple. The description for example diagrams are 14.7 lines of code (σ = 4.57) and 109.9
tokens (σ = 48.6). In contrast, the average SVG source of these same diagrams have 454.7 lines
of code (σ = 184.3) and 1290.4 tokens (σ = 650.4). This indicates that EDGEWORTH provides a
concise and compact textual representation of diagrams across all three domains.

5.4.2 Euclidean Geometry

Figure 5.5: An example problem in Holt Geometry [28] about triangle congruence (left) replicated in EDGEWORTH
(right). Colored shadings are added for clarity.

We sample 17 Euclidean geometry problems from Holt Geometry [28], a high school geometry
textbook. Figure 5.5 shows an example problem. The textbook uses a consistent visual style of
predominantly black line segments and dots with text labels. Most diagrammatic problems are
presented as one diagram followed by one or more multiple-choice problems. We’ve recast the
problems as diagrammatic translation problems.

For this domain, we build on the existing geometry stylesheet from PENROSE [191, Sec-

79

tion 5.3] for diagram layout. There are many different types of entities in geometry, and we found
that Add tended to introduce elements to the diagram that obviously do not pertain to the question
prompt. Through some trial-and-error, we settled on weighting deletions 20%, edits 80%, and
adds 0% to achieve reasonable results. The reason we weight edits higher than deletions is that
many of our geometry problems ask about specific named points, and deletions can make the
diagram invalid (i.e., SUBSTANCE failing to be compiled by PENROSE) by removing points that
are mentioned in the prompt.

We use the problem in Figure 5.5 to demonstrate how EDGEWORTH generates variations that
are meaningful as problem options. In correct diagram to the prompt (Option 2), 4DEC and
4DEA are congruent by the Side-Angle-Side rule. In particular, they share a side (DE), the
sides AE and EC appear to have equal length and are marked as such with a tick, and ∠DEA
and ∠DEC are both right angles and therefore equal.

Option 4 in Figure 5.5 involves mutating the scenario by removing the right angle marker
which makes it impossible to prove that ∠DEA and ∠DEC are equal. This is an example of the
Delete mutation described in Section 5.3.3. The angle appears to be a right angle in Option 3, so
this option might serve as a good distractor for students still learning the distinction between the
appearance of angles and their markings.

Option 3 involves mutating Option 2 by editing which sides have equal length. In Option
3, sides CD and AE are equal instead of AE and CE. This is an example of the Replace
Arguments mutation described in Section 5.3.3. A student might incorrectly select Option 3
if they believed in a Side-Angle congruence rule, where a single angle and single side being
equal could prove congruence. Finally, in Option 1 ∠CEB neither is marked as a right angle
nor appears as a right angle. A student might incorrectly select Option 1 if they believed in a
Side-Side congruence rule, where two sides being equal could prove congruence.

80

Figure 5.6 shows the first 10 variations EDGEWORTH generated from the example diagram.
To create our problem, shown in Figure 5.5, we selected the original diagram and two incorrect
variations (numbers 1 and 8), plus another variation in an extended pool (number 16). As shown
in Figure 5.6, there are many other viable answer choices in the first 10 variations. Many of the
diagrams involve extra details that are irrelevant to the problem, like the circle in number 6 or the
vector above point B in number 2. These extra details can be pedagogically useful for teaching
students to filter irrelevant information in the domain. Some of the other diagrams are very
obviously incorrect, like number 10 which doesn’t show a blue triangle, or number 7 where the
blue triangle is much larger than the orange triangle; these can be useful for building confidence
when students are first learning.

5.4.3 General Chemistry: Lewis Structures
We chose 7 chemistry problems on Lewis structure from an online General Chemistry 1 course
[137]. These problems test students’ understanding of how atoms bond together based on formal
charges. The module introduces students to the octet rule: the tendency of main group atoms
to form enough bonds to obtain eight valence electrons. Lewis structure diagrams show bonds
among atoms and valence electrons on atoms typically following the octet rule.

We extend the existing PENROSE chemistry stylesheet to include notation and layout rules
for Lewis structures. To permit incorrect diagrams, the chemistry stylesheet must not enforce the
octet rule. It does specify that an atom can have any number of bonds and that it can have 0, 2, 4,
or 6 valence electrons. These specifications cover all problem scenarios in this Lewis structure
module.3 In accordance with stylistic conventions in the field, EDGEWORTH automatically lays
out atoms, bonds, and electrons to maximize bond angles and repel electrons from bonds. For
molecules involved in all 7 problems, the layout algorithm produces high-quality diagrams without
any manual manipulation needed from the author.

To configure EDGEWORTH for this domain, we weight edits 100%. We exclusively weight
on edits because we observed that variations of molecules never add or delete atoms and bonds.
Although valence electrons may be added or deleted, they are modeled as predicates that can be
edited to change the number of electrons for an atom (e.g., ZeroDots(H) → TwoDots(H)) via a
Replace Function mutation operation.

3“Odd electron molecules are very rare and cannot achieve full octets of electrons around atoms because of the
odd number of electrons.” [137]

81

Figure 5.6: The first ten diagram variations generated by EDGEWORTH for the problem shown in Figure 5.5.

82

Figure 5.7: An example problem in general chemistry that asks the student to identify the correct Lewis structure for
HCN.

Figure 5.7 shows an EDGEWORTH Lewis structure problem for hydrogen cyanide. In the
original problem, the third option is correct. The EDGEWORTH version shows the correct diagram
as option 1. Incorrect choices for this problem can be generated via mutation. For instance, if
a student forgets that nitrogen must have eight surrounding electrons, they might choose the
bottom-left option, which was generated by removing the valence electrons around nitrogen.
Or, if a student does not know that hydrogen should only have two electrons instead of eight,
they might select the top-right choice, which was generated by mutating the number of electrons
around hydrogen from zero to six. Finally, if a student does not know that free electrons should
be minimized, they might pick the bottom-right diagram, which was generated by mutating up the
number of electrons around carbon and nitrogen and changing the triple bond to a double bond.

5.4.4 Discrete Math: Graphs
We draw 7 graph theory problems from the “Graphs” chapter of Discrete Mathematics and Its
Applications [156, Chapter 10]. We model our visual representation after the style used in the
textbook because students are already accustomed to recognizing graph diagrams in this style. We
created a new PENROSE stylesheet for four subdomains of graphs (directed vs not, and multigraph
vs not). For each of these subdomains, EDGEWORTH automatically lays out graph nodes, edges,
loops, arrows, and labels in configurations that minimize confusing overlap of diagram elements.

To configure EDGEWORTH for the graph domain, we weight additions 50%, deletions 40%,
and edits 10%. We disfavor edits in this domain because most of them are not useful: Replace
Function is inapplicable for any of our graph subdomains, and Swap Arguments only applies to
directed graphs. Replace Arguments is meaningful, but most desirable mutations for graphs are

83

Figure 5.8: An example problem that asks the student to identify graphs with Euler circuits.

better represented by the addition or deletion of edges and nodes. For instance, a bipartite graph
can become not-so by adding edges, or a strongly-connected graph can become not-so by deleting
edges.

Figure 5.8 shows an EDGEWORTH problem asking which of four directed graphs have an
Euler circuit4. The example scenario shown as option 4 does not have an Euler circuit, as can
be seen by observing that the sum of a’s in-degree and out-degree is odd. In contrast, for option
3 generated by deleting edge (a, d), every node has an even sum of in-degree and out-degree,
and indeed there does exist an Euler circuit. This condition on degree is only sufficient for
undirected graphs, though; the diagram in the top-right is generated by flipping edge (b, c) from
the bottom-left diagram, but does not have an Euler circuit, thwarting the simple degree counting
heuristic. Finally, the simple diagram in the top-left is generated by deleting d and trivially has an
Euler circuit.

5.5 Summary

The chapter introduces EDGEWORTH, a tool designed to aid the authoring of diagrammatic
problems for educators in STEM. Recognizing the importance of representational fluency–the
ability to understand and translate between different forms of representation such as diagrams,
symbols, and text–EDGEWORTH addresses the challenge educators face in manually creating and
maintaining visual content for instructional purposes. By allowing educators to create a single
example diagram, EDGEWORTH automatically generates numerous variations, simplifying the

4An Euler circuit is a path in a graph that starts and ends at the same vertex and visits every edge exactly once.

84

process of developing diagrammatic problem sets.
The chapter also covers the system design of EDGEWORTH and its program mutation tech-

niques for generating diagram variations. EDGEWORTH’s approach is domain-agnostic, making it
adaptable across various instructional contexts. To show EDGEWORTH’s flexibility and expres-
siveness, we gather a translation problem dataset from Euclidean geometry, general chemistry, and
discrete mathematics. In the next chapter, we discuss three studies that evaluate various aspects of
EDGEWORTH.

85

86

Chapter 6

Evaluating EDGEWORTH1

In this chapter, we discuss three studies to evaluate various aspects of EDGEWORTH (Chapter 5).
To effectively scale up visual practice authoring, EDGEWORTH must support a diverse set of
instructional domains, generate high-quality diagrams consistently, and allow educators to author
real-world problems. In Sections 6.1 to 6.3, we evaluate EDGEWORTH by answering the following
research questions on these qualities:

• Reliability (RQ3.1): Can EDGEWORTH reliably generate translation problems within
relatively few diagram variations?

• Efficiency (RQ3.2): comparing with a conventional drawing tool, are authors more efficient
at making translation problems using EDGEWORTH?

• Ecological validity (RQ3.3): Do real-world instructors consider EDGEWORTH-generated
translation problems to be useful?

First, we evaluated the reliability of EDGEWORTH by labeling 310 diagram variations from
translation problem dataset (Section 5.4) by hand. With high inter-rater reliability (κ = 1), the
result shows that EDGEWORTH can reliably generate diagrams that constitute valid four-choice
translation problems, when constrained to 10 variations per problem.

Second, we performed a user study to measure authors’ efficiency at creating translation
problems using EDGEWORTH, compared with a conventional drawing tool. The results show
that once authors make a correct diagram, they are about 3 times faster at making diagrammatic
options for translation problems using EDGEWORTH compared to Google Drawings.

Finally, we conducted walkthrough demonstrations with 9 educators that have experience
creating problems. The goal of the demonstrations was to obtain feedback on the ecological
validity of EDGEWORTH-generated problems and the usefulness of EDGEWORTH in general.
Overall, these experts found EDGEWORTH-generated problems to contain pedagogically useful
variations and high visual quality. They provided detailed feedback on individual diagram
variations and suggested how EDGEWORTH might fit into their instructional contexts.

1This chapter is partly adapted from Sections 6 to 7 of “Edgeworth: Efficient and Scalable Authoring of Visual
Thinking Activities” [133].

87

6.1 Reliability Evaluation (RQ3.1)

EDGEWORTH’s approach involves random mutations. The mutation operations are type-safe, but
type-safety does not prevent degenerate diagram layouts. For instance, Point A, B followed
by Triangle t := MkTriangle(A, A, B) will typecheck. However, since the triangle described
in this scenario involves the Point A twice, EDGEWORTH will produce a line segment, not
a triangle from this scenario. Are EDGEWORTH suggestions dominated by these nonsensical
scenarios? In this section, we evaluate whether EDGEWORTH can reliably suggest diagrams that
are valid answer options to multiple-choice translation problems (RQ3.1).

6.1.1 Methods

The goal of EDGEWORTH is to generate enough diagram variations to assemble a four-choice
multiple-choice problem for a given prompt. To this end, we use the following classification
scheme for diagram variations: a variation can be a Correct or Incorrect answer to the prompt,
or Discarded because the diagram is invalid for missing key components or lacking readability.

For RQ3.1, we define “relatively few variations” to be 10 diagrams, and consider EDGEWORTH

to have generated a translation problem in n variations if at that point we have (possibly including
the original diagram) at least one Correct diagram, at least one Incorrect diagram, and in total at
least four diagrams that are either Correct or Incorrect.

We used EDGEWORTH to generate 10 diagrams per problem for all 31 problems in the
translation problem dataset (Section 5.4), which yielded 310 diagrams in total. To evaluate this
coding scheme, we randomly sampled 2 problems from each of our 3 domains, for 60 generated
diagrams total. The first two authors each coded all 60 of those sample diagrams, after which we
calculated the Cohen’s κ [39] statistic (κ = 1). Then with the assumption that our coding scheme
has reasonable inter-rater reliability, at least one author2 coded all remaining diagrams, allowing
us to determine the number of our prompts for which EDGEWORTH was able to successfully
generate a multiple-choice problem. The coding results are included in Appendix I.

6.1.2 Results

6.1.2.1 Reliability of Problem Generation

For RQ3.1, we found that EDGEWORTH generated valid multiple-choice problems for 27/31
prompts within 10 variations, and for 30/31 problems within 20 variations. For each of these four
failures with 10 variations, EDGEWORTH did generate at least four Correct examples, but we
had to Discard all the other diagrams, leaving no Incorrect examples. For the one remaining
failure with 20 variations, EDGEWORTH never succeeded even after we increased the number of
variations to 50.

88

Correct Incorrect Discard total
geometry 52 54 64 170
chemistry 3 54 13 70

discrete 28 25 17 70
total 85 133 94 310

Table 6.1: Distribution of diagram variation classes.

6.1.2.2 Distribution

The original diagram is a Correct answer for every prompt, except for the two Euler circuit
prompts, in which the original diagram is Incorrect. For EDGEWORTH-generated variations, the
full distribution of classes is shown in Table 6.1.

The chemistry domain had a far smaller proportion of Correct variations than the other two
domains because the only way for a variation to be Correct is for it to coincidentally be identical
to the original diagram. Interestingly, in the other two domains, there were about the same number
of Correct and Incorrect variations.

In the geometry domain, Discarded diagrams were primarily either diagrams missing elements
referred to in the question prompt, or diagrams that were visually degenerate (e.g., everything
compressed into a single line). In chemistry, we Discarded diagrams where the molecule was
disconnected. Finally, in the graph domain, we Discarded diagrams in which some nodes were
labeled and others were unlabeled (i.e., EDGEWORTH had inserted new unlabeled nodes when all
nodes in the original diagram were labeled).

6.1.2.3 Inter-rater Agreement

We sampled two problems per domain from the problems collected in Section 5.4 to evaluate
inter-rater agreement (six problems or sixty diagrams in total, 19% of the dataset). We found
perfect agreement on that sample, so κ = 1.

6.2 Experimental Evaluation of Authoring Efficiency (RQ3.2)
To answer RQ3.2, we conduct an experiment that compares EDGEWORTH against a conventional
drawing tool in translation problem authoring tasks. In this section, we describe the experimental
setup and findings.

6.2.1 Study Design
6.2.1.1 Participants

We recruited 16 participants through advertisement in the university community (e.g. emails and
Slack channels). Participants were screened to have some past experience using digital drawing
tools. All participants reported that they have used Google Drawings and/or equivalent tools to

2The study is conducted jointly with authors of Ni et al. [133].

89

Domain Task 1 (Prompt 1) Task 2 (Prompt 1) Task 3 (Prompt 2) Task 4 (Prompt 2)
Chemistry Google Drawings EDGEWORTH Google Drawings EDGEWORTH

Chemistry EDGEWORTH Google Drawings EDGEWORTH Google Drawings
Geometry Google Drawings EDGEWORTH Google Drawings EDGEWORTH

Geometry EDGEWORTH Google Drawings EDGEWORTH Google Drawings

Table 6.2: Participants were divided into 4 groups by the tools they used and diagramming domains of the tasks.
Each row corresponds to the task sequence of one of the groups. Participants used both EDGEWORTH and Google
Drawings to author problems for two prompts in chemistry or geometry (Figure 6.2).

make diagrams in the past. 3 out of 16 participants are Software Engineering Ph.D. students
from Carnegie Mellon University and 13 participants are undergraduate students participating
in an Research Experiences for Undergraduates program at Carnegie Mellon. All students have
previously taken at least an introductory computer science course.

6.2.1.2 Tasks

We selected four problem prompts from the translation problem dataset (Section 5.4), two from
the chemistry domain and two from geometry, shown in Figure 6.1.

We segmented the authoring of the first correct diagram and subsequent incorrect diagrams
in the tasks. This segmentation allows us to separately measure the authoring efficiency of
creating the example scenario (Section 5.3.1.1) and creating counterexamples (Section 5.3.1.2).
For participants who used EDGEWORTH, we were particularly interested in the upfront cost of
making the first SUBSTANCE diagram in the PENROSE editor.

For each task, the participant were given (1) a textual problem prompt and (2) an example
diagram (i.e., a correct response to the prompt). Participants were then given up to 20 minutes to
complete each task, which involve two segments: (a) correct segment: participants first re-created
one example visually similar to the given diagram and then (b) incorrect segment: made up to 10
incorrect diagrams by editing the diagram produced in sub-task (a). Each sub-task is time-bounded
to 10 minutes. If the participant failed to produce 1 correct diagram in the first segment, they were
provided with one so they could continue to the next segment. Each participant completed two
problem prompts in chemistry or geometry.

6.2.1.3 Experimental Design

The study was a within-subject design, where participants were divided into four groups by
the ordering of tools they use and diagramming domains of their tasks. Participants used both
EDGEWORTH and Google Drawings to author diagrams in a random counterbalanced order.
Participants were further randomly assigned into one of two subgroups: one subgroup made
chemistry diagrams and the second subgroup made geometry diagrams. Table 6.2 summarizes the
four groups that resulted from the tool and domain assignments. Each group had four participants.

In the 90-minute study session, each participant was given two problem prompts in total,
each repeated twice for EDGEWORTH and Google Drawings, so four tasks in total. For instance,
a participant in the chemistry-drawing group (the first row in Table 6.2) would spend up to 10
minutes making 1 correct diagram (correct segment) and then up to 10 minutes to make incorrect

90

Prompt 1: In which of the following
diagrams are segments AB and CD parallel?

Prompt 2: In which of the following
diagrams is there a perpendicular bisector

for segment BC?

Prompt 1: Which of the following diagrams
shows the correct Lewis structure for CH2O?

H

H

O

C

Prompt 2: Which of the following diagrams
shows the correct Lewis structure for HNO3?

O

O

OH
N

Figure 6.1: Tasks used in the EDGEWORTH experimental evaluation. Each participant is given a textual prompt and a
correct diagram to this prompt at the beginning of each task. They are asked to first re-produce the correct diagram
using the designated tool in the correct segment, and then edit this diagram to produce up to 10 incorrect diagrams to
the prompt in the incorrect segment.

91

Hydrogen h1, h2

Sulfur s1

Oxygen o1, o2, o3, o4

Bond b2 := SingleBond(h1, o1)

Bond b3 := SingleBond(h2, o2)

Bond b4 := SingleBond(o1, s1)

Bond b5 := SingleBond(o2, s1)

Bond b6 := DoubleBond(o3, s1)

Bond b7 := DoubleBond(o4, s1)

ZeroDots(h1)

ZeroDots(h2)

ZeroDots(s1)

FourDots(o1)

FourDots(o2)

FourDots(o3)

FourDots(o4)

O

O

O

O

H

H

S

Point A, B, C, D

Let BC := Segment(B, C)

Angle CAB := InteriorAngle(C, A, B)

Angle CDB := InteriorAngle(C, D, B)

Angle ACB := InteriorAngle(A, C, B)

Angle CBD := InteriorAngle(C, B, D)

EqualAngleMarker(ACB, CBD)

RightMarked(CAB)

RightMarked(CDB)

Let AB := Segment(A, B)

Let AC := Segment(A, C)

Let CD := Segment(C, D)

Let DB := Segment(D, B)

EqualLengthMarker(AC, DB)

EqualLength(AC, DB)

ParallelMarker(AB, CD)

Parallel(AB, CD)

Point M

On(M, BC)

Let c := Circle(M, B)

OnCircle(c, C)

AutoLabel A, B, C, D

Figure 6.2: Participants were provided both Google Drawings and SUBSTANCE examples throughout the study. The
SUBSTANCE code (left) was given in the EDGEWORTH tasks and a Google Drawings file that visually resembles

the PENROSE output (right) was given for the Google Drawings tasks.

diagrams of CH2O using Google Drawings (incorrect segment) first, and then another 20 minutes
on the same prompt using PENROSE for the correct segment and EDGEWORTH for the incorrect
segment. After that, this participant would repeat the same for HNO3.

At the start of each study session, participants were given 5-minute tutorials of EDGEWORTH

and Google Drawings, in which they were guided to draw either a right triangle or the Lewis
structure of O2. The ordering of tutorials match the counterbalanced ordering of Google Drawings
and EDGEWORTH. Throughout the session, participants had access to one Google Drawings
example and one SUBSTANCE example. Figure 6.2 shows the chemistry and geometry examples.
The examples are samples from the translation problem dataset (Section 5.4) that are visually
more complex than the actual study tasks. We provided them to the participants as an authoring
aid so that they can copy elements from the examples to save time, analogous to the real-world
experience of copying and pasting online examples reported in Section 5.2.

Participants received no more instructions during the tasks. The experimenter only observed
the participant and used a stopwatch to measure the time on task. After completing each task,
participants completed a survey that asked them if they agree with the following statements on a
5-point Likert scale:

• I would use this problem for a class that I teach.
• The problem is pedagogically useful (i.e., students will benefit from doing this problem).
• The diagrams in the problem are of high visual quality.

The study took about 90 minutes per participant, using a provided MacBook Pro with the
latest version of Chrome installed. The study sessions were audio-recorded and transcribed. All
participants were compensated $25 Amazon gift cards for their time.

6.2.2 Results

Table 6.3 shows the average total time, diagrams produced, and time per diagram for all partici-
pants. The Diagram Ct column in Table 6.3 shows how many diagrams participants produced

92

in each segment of all tasks on average. Any number lower than 1 for correct segments and 10
for incorrect segments indicates that the corresponding participant did not complete the segment.
All participants authored 10 incorrect diagrams within 10 minutes using EDGEWORTH for both
domains. In the geometry group, 6 out of 8 participants (11 out of 16 total segments) failed to do
so using Google Drawings for at least one segment. In the chemistry group, 1 out of 8 participants
failed for both incorrect segments. All participants were able to complete the correct diagram for
both chemistry prompts using both tools. For the geometry tasks, all participants produced one
correct diagram in the first segment using Google Drawings, but 3 failed using PENROSE.

Domain Segment Tool Total Time Diagram Ct Time/Diagram
Chemistry correct PENROSE 144.19s 1.00 144.19s

Google Drawings 231.81s 1.00 231.81s
incorrect EDGEWORTH 150.13s 10.00 15.01s

Google Drawings 440.63s 9.38 51.56s
Geometry correct PENROSE 390.94s 0.81 390.94s

Google Drawings 228.50s 1.00 228.50s
incorrect EDGEWORTH 257.25s 10.00 25.73s

Google Drawings 549.38s 7.38 100.90s

Table 6.3: Summary of Average Time, Diagram Count, and Time Per Diagram by Domain for both chemistry and
geometry domains, and two segments of each task (Section 6.2.1.2). Each participant produces up to 1 correct
diagram first and then up to 10 incorrect diagrams. The time data reported under “correct” segment are for the correct
diagram and the time for “incorrect” segment are for the incorrect diagrams.

A two-way repeated measures ANOVA was conducted to examine the within-subject effects
of tool (EDGEWORTH vs. Google Drawings) and task (correct vs. incorrect) on various outcomes.
The analysis included task completion time and other performance metrics across the domains of
chemistry and geometry.

For the incorrect segments, the analysis revealed significant differences in task completion
times between the tools used, visualized in Figure 6.3 (right). In the chemistry domain, participants
completed tasks significantly faster (almost 3 times faster) using EDGEWORTH (M = 150.13s,
SD = 59.15s) compared to Google Drawings (M = 440.63s, SD = 113.04s), as indicated by the
significant main effect of tool, F (1, 7) = 53.33, p = 0.0002. There was no significant effect
of the task itself, F (1, 7) = 1.29, p = 0.293, suggesting that the difficulty of the tasks was
consistent regardless of the tool used. Similarly, in the geometry domain, participants also
completed tasks significantly faster (similarly, almost 3 times faster) with EDGEWORTH (M =
257.25s, SD = 139.55s) compared to Google Drawings (M = 549.38s, SD = 91.28s), with a
significant effect of the tool, F (1, 7) = 90.97, p < 0.0001. There was a marginal effect of task,
F (1, 7) = 3.64, p = 0.098, indicating a trend towards task differences that did not reach statistical
significance.

For the correct segments, the analysis showed mixed results on PENROSE’s performance
depending on the domain, illustrated in Figure 6.3 (left). In the chemistry domain, participants
completed tasks significantly faster using PENROSE (M = 144.19s, SD = 79.22s) compared to
Google Drawings (M = 231.81s, SD = 129.78s), as indicated by the significant main effect of
tool, F (1, 7) = 6.65, p = 0.037. There was no significant effect of the task itself, F (1, 7) =

93

Figure 6.3: Violin plots showing the distribution of time-on-task for both correct (Left) and incorrect (Right)
segments of tasks. The shape of the violins represents a smoothed approximation of the data distribution, with wider
sections representing higher density. The embedded box plots within the violins show the median (white line) and
inter-quartile range (thick black bar), with the whiskers (thin black lines) extending to the data range.

0.99, p = 0.353. In the geometry domain, however, Google Drawings outperformed PENROSE,
with participants completing tasks faster using Google Drawings (M = 228.5s, SD = 71.74s)
compared to PENROSE (M = 390.94s, SD = 149.74s), as indicated by the significant main effect
of tool, F (1, 7) = 15.95, p = 0.005. Again, there was no significant effect of the task itself,
F (1, 7) = 0.28, p = 0.611.

In the per-task survey, summarized in Table 6.4, participants provided feedback on the tasks
across two domains and both tools. For the chemistry tasks, EDGEWORTH was rated highly
across all survey items, with participants expressing a strong likelihood of using the problems
in their classes (M = 4.19), finding them pedagogically useful (M = 4.25), and rating the visual
quality of the diagrams as excellent (M = 4.50). In contrast, Google Drawings received lower
ratings in chemistry, particularly in terms of visual quality (M = 2.81). In the geometry domain,
EDGEWORTH also was rated well, with participants finding it useful (M = 4.06) and visually
acceptable (M = 3.38), although the ratings were slightly lower compared to chemistry. Google
Drawings in geometry was rated lower across all dimensions, with middling scores for usefulness
(M = 3.50) and visual quality (M = 3.44). Overall, EDGEWORTH consistently out-rates Google
Drawings, particularly in terms of the visual quality of the diagrams and pedagogical usefulness,
especially in the chemistry tasks.

We conducted a Multivariate Analysis of Variance (MANOVA) on the survey data to quan-
titatively assess the impact of the tool (EDGEWORTH vs. Google Drawings) and the domain

94

Domain Tool Would Use Useful High Quality

Chemistry
EDGEWORTH 4.19 4.25 4.50
Google Drawings 3.63 3.94 2.81

Geometry
EDGEWORTH 3.94 4.06 3.38
Google Drawings 3.38 3.50 3.44

Table 6.4: Survey responses for chemistry and geometry tasks using EDGEWORTH and Google Drawings. Higher
numbers (visualized in green hue) indicates positive responses and lower numbers (yellow and red hue) negative
responses.

(chemistry vs. geometry) on three dependent variables corresponding to the survey questions.
The results showed a significant effect of the tool on the combined dependent variables, with
Wilks’ lambda indicating that the choice of tool had a statistically significant influence on the
survey responses, F (3, 59) = 3.3995, p = 0.0235. The domain (chemistry vs. geometry) did not
have a significant effect on the combined dependent variables, F (3, 59) = 0.7550, p = 0.5239.
A significant intercept observed in the analysis, F (3, 59) = 217.9321, p < 0.0001, suggests that
the overall mean response across all groups was significantly different from zero, indicating that
participants generally provided positive ratings across all survey items. In summary, EDGEWORTH

was perceived more favorably across the three survey questions compared to Google Drawings.

6.2.3 Discussion

The results show a trade-off between the time taken to create correct diagrams using PENROSE

and the efficiency of generating incorrect variations using EDGEWORTH. Participants might spend
more time on the initial correct diagram using PENROSE, but are significantly and consistently
faster at making incorrect diagrams using EDGEWORTH than Google Drawings. On average,
participants were 3–4× faster using EDGEWORTH. In geometry, the initial correct diagram took
more time with PENROSE (390.94s per diagram versus 228.50s with Google Drawings), but the
time per incorrect diagram was much lower with EDGEWORTH (25.73s) compared to Google
Drawings (100.90s).

The initial investment in the first SUBSTANCE program differs depending on the language
complexity and layout consistency. Generally speaking, the PENROSE chemistry domain is simpler
to learn than the PENROSE geometry domain. The chemistry domain has a simpler grammar
consisting of atoms, bonds, and valance electrons. The layout for chemistry diagrams is also
more stable and consistent. In contrast, the PENROSE geometry domain includes many predicates
among points, line segments, lines, rays, angles, and so on. The geometry STYLE is also less
polished than that of chemistry. We observed that participants were sometimes confused by bad
layouts produced by PENROSE, and doubted the correctness of their SUBSTANCE programs. The
timing data in the correct segment shows the difference: participants were 1.7× faster to make the
correct diagram using PENROSE on average in chemistry, but 1.7× slower in geometry.

95

ID Occupation Years of Experience Domain(s)
E1 MOOC Course Designer 7 Chemistry
E2 Liberal Arts College Professor 4 Chemistry, Geometry
E3 Community College Professor 30 Chemistry
E4 Liberal Arts College Professor 11 Graphs
E5 Research University Professor 17 Graphs
E6 Research University Professor 5 Graphs
E7 Middle School Teacher 5 Geometry
E8 Undergraduate Teaching Assistant 3 Geometry, Graphs
E9 High School Teacher 11 Geometry, Graphs

Table 6.5: Demographics of walkthrough demonstration participants.

6.3 Expert Walkthrough Demonstration and Feedback (RQ3.3)
The intended users of EDGEWORTH are educators who create problems. These users are very
important to the education system since other teachers make use of their problems. Therefore, we
recruited educators who created visual practice problems in multiple domains and educational
settings to evaluate ecological validity of EDGEWORTH-generated problems (RQ3.3). While an
expert survey may suffice for rating problem quality, we opted for walkthrough demonstration,
based on prior research on evaluation methods by Ledo et al. [104], to gather additional qualitative
feedback on the value of having the toolkit in their day-to-day work.

6.3.1 Participants and Procedure
We recruited domain expert educators of chemistry, geometry, and graph theory. Experts were
invited based on their extensive teaching experience in the domain and past experience in authoring
diagrammatic content. In contrast to the criteria in the formative study (Section 5.2), this study
selected participants based on their domain-specific expertise in authoring problems. Recruited
educators came from a wide range of institutions, including Massive Open Online Courses
(MOOC) platforms, liberal arts colleges, community colleges, research universities, and secondary
schools. The average teaching experience among the 9 expert educators (E1 – E9) was 10.33
years, with a standard deviation of 8.39 years, highlighting a broad range of teaching experience.
One of the participants is the original author of the chemistry problems reproduced in the
translation problem dataset (Section 5.4). Table 6.5 summarizes the demographic information for
9 expert educators (E1–9) who participated in the study.

Each expert participated in a 60- to 90-minute session via video conferencing, which was
recorded with their consent. At the start of each session, we demonstrated the workflow of
EDGEWORTH end-to-end, as described in Section 5.3.1, on one problem outside of the expert’s
domain. For the remainder of the session, we asked the expert to assemble problems from the
EDGEWORTH output of two to four problem prompts randomly sampled from the translation
problem dataset (Section 5.4) in their domain. Per prompt, the expert rated 10 diagram variations
based on the categories described in Section 6.1.1. In addition, we asked participants to provide
more granular feedback on diagram quality. After rating the diagram variations, they were asked

96

to pick diagrams to assemble a four-choice diagrammatic translation problem. After the problem
was assembled and shown on the interface, we asked (1) if they would use the problem in their
instruction and (2) how they would author the diagram using their own workflow. The full study
protocols for both the chemistry and geometry group are included in Appendix J.

6.3.2 Ecological Validity of Generated Problems
Overall, experts were happy with the problems they assembled with EDGEWORTH-generated
diagrams. Experts (E1–9) indicated that they would use all of the problems they created using
EDGEWORTH in their coursework. Other experts said they would use EDGEWORTH-generated
problems “early in the learning process” (E3) and “as a warm up exercise at the start of the
next lecture” (E4). In addition, expert said these problems could be used to review previously
introduced concepts. For example, E3 found the diagram variations that break the octet rule to be
useful for “after you’ve also introduced expanded octet or non-octet-rule things.” Experts plan to
use EDGEWORTH-generated problem to “focus on things that students struggle with” (E3) and
when introducing concepts that are “all about visualization” (E5) such as planarity of graphs. E7
asked to see all problems we gathered in the translation problem dataset (Section 5.4) and was
excited to them in their class because they were “going to be covering everything [on the list].” In
addition to just asking students to select correct diagrams, E3 also pointed out that by prompting
students to “tell me what is wrong rather than just which is the correct one,” the problem can be
used to “dive deeper.” Similarly, E4 proposed to use EDGEWORTH problems as “an interactive
warm-up for reviewing the last lecture, where students vote on and explain why a diagram is
correct.” E7 even plans to use EDGEWORTH as “a creative instead of assessment piece” and
“have the students be the teacher . . . playing this role more, they get better at tests, because they
understand what the test makers are doing.”

6.3.3 Expert Feedback
6.3.3.1 Experts provided positive qualitative feedback on EDGEWORTH

Experts reacted positively to EDGEWORTH. They found EDGEWORTH to be a “perfect fit” (E1,
E6, E8) for generating multiple-choice problems, especially “low-stake” (E2, E3, E5, E6, E8, E9)
quizzes that “incentivize [students] to keep up with the class” (E8). Experts said the automatic
layout of EDGEWORTH “draws things really fast” (E5), “saves you the time of drawing multiple
structures” (E3), and produces “beautiful” (E4, E7) diagrams. Comparing with their existing tools,
EDGEWORTH is a “nice time-saver” (E3) and the translation problems they authored during the
session would take an “enormous amount of work” (E4), “infinitely longer than this took” (E6).

Notably, experts pointed out that EDGEWORTH aids creativity by promoting “recognition over
recall” (E6). Specifically, EDGEWORTH helps with “the thinking about how to come up with the
graphs” and simplifies the diagram layout such that “you just generate some mutations that you
click refresh until it looks nice” (E6). E2 liked that “it can come up with different possibilities
than the ones that would be immediately apparent to me.”

In addition, experts commented that EDGEWORTH can enable them to give students more
practice. For instance, E4 noted that “there’s a feedback loop where . . . if I had a really good

97

tool for generating nice multi-choice questions, then I could envision doing that much more
frequently.”

Importantly, in the context of student authoring problems themselves, E7 thinks that lowering
the barrier of problem authoring help students “feel they have ownership in their learning as well
as sharing their ownership with other students in the class.”

6.3.3.2 Experts used visual selection to express diverse standards on diagram quality

When rating diagram mutants, experts agreed with diagram ratings of Section 6.1, but expressed
unique standards for selecting answer choices (Section 6.3.1). Since experts had different stan-
dards, they selected different diagrams to assemble problems. This suggests EDGEWORTH’s use
of visual selection met experts’ needs.

One group of experts (E2, E4, E6, E7, E8, E9) preferred to maintain a balanced mix of answer
choices, “at least one that’s obviously correct, at least one that’s obviously incorrect, and then
. . . two where you have to think about that a little bit” (E6). One rationale was to “make sure
[the problem] is challenging enough, but also has some things that are accessible to students that
haven’t completely mastered the material” (E4). Another was to teach “the process of elimination”
(E7, E9). Another group of experts (E1, E3, E5) had much higher standards for including a mutant
in a multiple-choice problem. For example, E1 preferred problems to contain one correct answer
and multiple distractor options that are “less obvious” such that students won’t “pattern match
without looking at the details.”

On a problem that E2 accepted 7 out of 10 mutants as good incorrect options, E3 discarded 8
out of 10 because they “violated the octet rule in egregious or blatantly egregious way.” However,
E3 said whether the octet rule can be broken depends on “where students are in the course.”

The difference of standards is highly individual. From E2’s knowledge of “colleagues [who]
only give difficult distractors” and “certain profs [who] are legendary for having really hard
multiple choice,” they guessed that harder problems “motivate the students to try harder,” but
also pointed out that it “only works for certain students in my experience.” E3 stated that their
choice in diagrams “hinges upon my perception of whether students will automatically disqualify
something,” which they admitted is “a certain premise or bias.” In E3’s words: “Wow, it’s really
tough to . . . completely take off the instructor hat.”

This comment reflects the concept of expert blind spot in learning sciences literature, where
experts fail to “understand the processes of novices who are struggling to understand new ideas
during their constructive learning process” [129].

6.3.3.3 Experts selected isomorphic diagrams to build conceptual understanding

EDGEWORTH sometimes produces isomorphic diagrams, i.e., diagrams with identical content but
different layouts. These diagrams occur when EDGEWORTH’s mutations have no net impact on the
example diagram, e.g., the mutator removes an edge from a graph and adds it back. Surprisingly,
experts found value in these isomorphic diagrams. In their geometry course, E2 said that their
textbook’s diagrams “get drawn the same way over and over again. And some students get stuck
into thinking that the concept is only communicated when the diagram is drawn [exactly] that
way.” When assembling a problem about the HCN molecule, E3 compared two isomorphic

98

variations, and picked one over another because “it’s drawn the opposite . . . which is interesting
and I think students are going to get it wrong.” Similarly, E1 finds isomorphic diagrams to
be useful for “molecules with resonance structures.” E5 found isomorphic planar graphs to be
particularly useful because students find them “painstaking to visualize when they just started.”
E5 planned to use EDGEWORTH to “draw a graph that doesn’t look like it could be planar first,
but then untangle it to show that the graph is actually planar.”

6.4 Limitations of the Studies
We discuss some limitations to the studies presented in this chapter.

6.4.1 Ecological Validity
The studies primarily focused on specific instructional domains, including chemistry, geometry,
and graph theory. While these domains were chosen from the translation problem dataset, the
studies are limited by the scope of the dataset itself. The performance and effectiveness of
EDGEWORTH might vary when applied to other fields that require different types of visual
problem representations, which were not explored in this research.

Although the expert walkthroughs provided valuable feedback on the ecological validity
of EDGEWORTH-generated problems, the artificial nature of the study environment might not
fully capture the complexities and constraints of real-world educational settings. The experts’
feedback were based on hypothetical scenarios and short-term interactions with the tool, which
may not fully reflect the challenges and demands of long-term usage in a classroom or curriculum
development context.

6.4.2 Tool
Participants in the user study were provided with brief tutorials on using EDGEWORTH and Google
Drawings, which may not have been sufficient for them to become fully proficient with these
tools. The learning curve associated with PENROSE and EDGEWORTH, especially their unique
approach to generating diagrammatic problems, might have influenced the results, particularly in
the efficiency evaluation. Participants with more extensive experience or training in using either
tool might exhibit different levels of efficiency and satisfaction than those observed in the study.

Both PENROSE and EDGEWORTH are still under development, and the studies were conducted
on particular versions of them. As they evolve, with potential updates and improvements, the
findings presented here might become outdated. Future research would need to re-evaluate the
tool’s performance and usability in light of new changes. Section 4.7 and Section 6.5 discuss the
specifics of PENROSE’s and EDGEWORTH’s system limitations.

6.4.3 Authoring Speed vs. Problem Quality
Participants in the user study described in Section 6.2 were not screened for their prior experience
nor expertise in diagrammatic problem authoring. In fact, a majority of them are undergraduate

99

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

O

H C

H

Figure 6.4: Screenshots of Google Drawings (top) and EDGEWORTH selections (bottom) of diagrams by P4 of the
user study (Section 6.2). They are instances of “shortcuts” participants took when using both tools, avoiding large
layout edits (top) in Google Drawings and selecting counterexamples seemingly at random in EDGEWORTH (bottom).

students. Therefore, their judgment of what makes a good problem (or lack thereof) might
influence the task performance data reported in Section 6.2. Theoretically, to get through the
tasks, participants could pick incorrect diagrams at random using EDGEWORTH, or make minimal
edits to the correct diagram to get alternatives using Google Drawings. To address this limitation
of the user study, we conducted expert demonstration walkthroughs Section 6.3 to gain a deeper
understanding of the ecological validity of EDGEWORTH-generated problems.

During the user study, we did in fact observe participants taking shortcuts in both conditions.
Here we show some examples of them and contrast them with the experts’ opinions. For instance,
Figure 6.4 (top) shows P4’s pattern of making small edits to the correct diagram to quickly
produce incorrect diagrams. These edits avoid moving many diagram components around while
maintaining a good layout. The similar layouts of atoms and bonds contrast experts’ feedback
on isomorphic diagrams (Section 6.3.3.3, e.g., “some students get stuck into thinking that the
concept is only communicated when the diagram is drawn [exactly] that way.” by E2). As another
example for EDGEWORTH, Figure 6.4 (bottom) shows two diagrams selected by a participant as
suitable incorrect answers for chemistry prompt 1 (Which of the following diagrams shows the
correct Lewis structure for CH2O?) in Figure 6.1. Per their feedback in Section 6.3.3.2, E3 would
not accept “Mutated Diagram #6” in the figure as a good incorrect options, because it “violated the

100

octet rule in egregious or blatantly egregious way.”3 Notably, as we discussed in Section 6.3.3.2,
experts did not agree on a single standard of high problem quality among themselves.

Overall, while participants took shortcuts in both user study conditions, we do not know how
much impact their quality standards have on the task performance. Importantly, there is not a
single standard for “good” judgment of problem quality, as the expert demonstration walkthroughs
showed a diversity of standards among experienced educators. Therefore, future research is needed
to tease out (1) what is an acceptable quality standard for diagrammatic translation problems and
(2) the effect of problem quality on authoring speed of diagrammatic problems.

6.5 Limitations of the EDGEWORTH System

In this section, we further discuss some limitations of the EDGEWORTH system in general.

6.5.1 Numerical and textual variations

EDGEWORTH cannot produce numerical and textual variations like traditional problem gener-
ators [2, 149] do. It is, however, possible to build this functionality on top of EDGEWORTH to
produce further problem variations.

6.5.2 Usability of UI components

The design presented in Section 5.3 focuses on generating diagram variations and selecting
diagram mutants to create problems. We use the SUBSTANCE language and PENROSE’s textual
interface without modification. Any limitations of SUBSTANCE and its UI are inherited by EDGE-
WORTH. We use standard Material UI elements4 to allow users to configure EDGEWORTH (e.g.,
a standard text box for changing diagram variations in Figure 5.3 c). While these components
might be usable as-is, they are not designed explicitly for the problem authoring workflow.

6.5.3 New domains of instruction

As shown in Section 5.3.3, the design of the EDGEWORTH mutator is domain-agnostic, as the
mutation operators do not require any domain-specific knowledge to produce mutants. However,
improving STYLE requires domain expertise. Therefore, future EDGEWORTH authors may not
have the technical background or the time to invest in a new STYLE program, which might prohibit
them from using EDGEWORTH if the domain is not well supported by the PENROSE ecosystem.
However, as noted in Chapter 4, the effort to build PENROSE stylesheets for new domains is only
necessary once per domain and not once per diagram or problem.

3The Carbon (C) atom in the diagram has 6 valance electrons, 2 double bonds, and one single bond, which is way
beyond the expected 8 electrons and bonds combined per the octet rule.

4https://mui.com/

101

https://mui.com/

6.5.4 Mismatches with the author’s intents

EDGEWORTH provides a mixed-initiative [4] workflow: authors focus on specifying the content
and the general direction of variations through the example scenario, while EDGEWORTH fully
automates the details of variation generation and layout. The evaluation studies presented in
Chapter 6 showed that this workflow improves authoring speed and can produce useful diagrams
to educators already. In this section, we focus on the current state of EDGEWORTH’s outputs and
propose future work for improving problem quality.

As discussed in Section 6.3, experts used terms like “obviously incorrect” (E6) and “less
obvious” (E1) to characterize the quality of problem options in a multiple-choice translation
problem. Based on their feedback, we divide these options into four categories: given a set of
mathematical statements describing logical entities and their relationships, a diagram can be
associated with them in one of the following ways:

• Example: the diagram represents the math
statements, i.e., all the statements hold true in
the diagram.
• Counterexample: the diagram clearly vi-
olates the math statements, i.e., one or more
statements are false in the diagram.
• Positive edge case: the diagram is an exam-
ple of the math statements, but contains extra-
neous entities and/or more specialized relation-
ships.
• Negative edge case: the diagram is a coun-
terexample, but only requires a few changes to
become an example.

Counterexample

Negative edge casePositive edge case

Example

Using EDGEWORTH, the author creates an example scenario and EDGEWORTH’s mutator
generates a set of diagrams. When these diagrams don’t satisfy the needs of the author (e.g.,
missing counterexamples that are important for an educational goal), the author can only generate
more variations and hope to get better ones. For example, suppose an author would like to create
problems that test students’ knowledge of improper subsets, especially the fact that if A ⊆ B,
A = B is allowed. Using the EDGEWORTH, the author first creates a SUBSTANCE program and
clicks “Generate Diagrams.”

Set A, B, C
IsSubset(B, A)
IsSubset(C, A)

Ideally, EDGEWORTH should generate a set of examples of the subset relations that include the
edge cases of A = B, A = C, or B = C, and counterexamples of B 6⊆ A or C 6⊆ A. However,
those particular mutated programs are extremely unlikely to be generated by EDGEWORTH.
The default EDGEWORTH output for this scenario is show in Figure 6.5. There are useful

102

Figure 6.5: A screenshot of the EDGEWORTH interface, after generating examples for a translation problem focusing
on improper subsets. The first pool of mutants isn’t suitable for this problem.

counterexamples, but none of the diagrams include edge cases such as:

Set A, B, C
IsSubset(B, A)
IsSubset(C, A)
Equal(B, C)

In our experience, it is not uncommon forEDGEWORTH to miss important edge cases. In addition,
the author cannot express their intent easily with the current version of EDGEWORTH and may
have trouble finding good mutants if they intend to create specific types of examples. We discuss
the possibility of augmenting EDGEWORTH with domain-specific knowledge, and allowing the
user to express their pedagogical intents in Section 7.2.3

6.6 Summary
This chapter presents an evaluation of EDGEWORTH through three studies focusing on its reliabil-
ity, efficiency, and ecological validity. The research questions addressed are whether EDGEWORTH

can reliably generate translation problems with minimal variations (RQ3.1), if it enhances author-
ing efficiency compared to conventional tools (RQ3.2), and whether educators find the generated
problems useful in real-world contexts (RQ3.3).

The first study (Section 6.1) assessed the reliability of EDGEWORTH by analyzing 310 diagram
variations across 31 problems. The results indicated that EDGEWORTH successfully generated
valid multiple-choice problems for most prompts within 10 diagram variations, demonstrating its
reliability in producing consistent and usable outputs (RQ3.1).

The second study (Section 6.2) compared the efficiency of authoring translation problems

103

using EDGEWORTH versus Google Drawings. The findings revealed that participants were
significantly faster when using EDGEWORTH (RQ3.2).

The final study (Section 6.3) involved expert educators who provided feedback on the eco-
logical validity of EDGEWORTH-generated problems. The educators found the problems to be
pedagogically useful and expressed interest in using EDGEWORTH in their instructional practices.
Their feedback also emphasized EDGEWORTH’s potential to save time and enhance creativity in
problem design (RQ3.3).

Overall, these studies demonstrate that EDGEWORTH is a reliable and efficient tool for
authoring educational problems, with strong support from educators for its application in diverse
instructional contexts.

104

Chapter 7

Conclusion and Future Work

7.1 Summary of contributions

This thesis makes several significant contributions to the study of diagramming, diagramming
tools, and educational technology, including:

• An interview study of the diagramming process, providing detailed insights into how experts
across different domains create and use conceptual diagrams. This study documents how
expert from a diverse set of domains author diagrams and identifies key challenges in
existing diagramming tools (Chapter 3).

• A natural diagramming framework that specifies four dimensions of diagramming tool
design opportunity that seamlessly and naturally translate diagrammers’high-level ideas to
illustrative and effective diagrams (Section 3.4).

• PENROSE, a novel system for creating diagrams from plain-text descriptions (Chapter 4).
PENROSE allows authors to encode domain-specific visual representations and automatically
lays out diagrams, bridging the gap between abstract ideas and their visual representation.

• EDGEWORTH, a tool built atop PENROSE, aimed at automating the generation of multiple-
choice diagrammatic problems that ask students to match symbolic/textual statements with
corresponding diagrams (i.e., translation problems) (Chapter 5).

• A dataset of translation problems that includes real-world diagrammatic problems in graph
theory, chemistry, and Euclidean geometry (Section 5.4).

• Empirical evidence supporting the reliability, efficiency, and ecological validity of EDGE-
WORTH in educational contexts (Chapter 6).

7.2 Future work

We now discuss potential future directions for PENROSE, EDGEWORTH, and diagramming tool
research in general.

105

7.2.1 Natural diagramming
In Section 3.4, we introduced four design opportunities for building natural diagramming tools
that let diagrammers “express their ideas in the same way they think about them” [127]:

• Representation Salience emphasizes the importance of treating visual representations as
first-class entities, enabling diagrammers to manipulate and reuse them effectively.

• Exploration Support helps users ideate and refine diagrams, moving fluidly between
high-level design choices and detailed refinements.

• Live Engagement bridges the gap between direct manipulation and abstraction, providing
immediate visual feedback and enhancing user control.

• Vocabulary Correspondence allows diagramming tools to align closely with users’ mental
models and domain-specific design vocabulary.

PENROSE is a platform that embodies representation salience by treating visual representa-
tions as first-class entities, achieved through domain-specific languages (DOMAIN, SUBSTANCE,
and STYLE) that decouple the abstract content from its visual representation in a diagram. We
showed in Chapter 4 that this separation allows the visual representation to be developed once in
STYLE and reused for different diagram contents specified by SUBSTANCE programs. In PEN-
ROSE, STYLE translates SUBSTANCE programs into layout optimization problems (Section 4.4)
that can be solved automatically (Section 4.2.2) to yield design alternatives that preserves the
STYLE-specified visual relationships. Leveraging the reusability and relation-preserving layout
of STYLE, we have built EDGEWORTH on top of PENROSE to generate diagrammatic multiple
choice problems by mutating SUBSTANCE programs (Chapter 5). Though the content-style
separation can be found in many systems such as TEX and HTML/CSS, EDGEWORTH is one of
few empirical demonstrations that shows this separation, an implementation of representation
salience, demonstratively improve authoring efficiency (Chapter 6).

Although PENROSE and EDGEWORTH are not intentionally designed to take advantage of
the rest of the natural diagramming opportunities, they do show promising directions and reveal
design challenges to further improve diagramming tools along the directions of exploration
support, live engagement, and vocabulary correspondence. Here we discuss some empirical
observations from the open-source development (Section 4.6) and our daily usage, in order to
shed light on future work.

In PENROSE, the separation of SUBSTANCE, STYLE, and DOMAIN enables users to effectively
design their own domain-specific languages and thereby improves vocabulary correspondence
to their diagramming domains. As we noted in Section 4.7, the core grammar of SUBSTANCE

does impose limits to how closely SUBSTANCE can model domain-specific notational conventions
(e.g., custom symbols and deriving multiple statements from one). Future work should examine
existing syntax extension and metaprogramming mechanisms in languages such as Standard
ML, Haskell, Coq, and Lean, and domain-specific languages for various domains (e.g., DSLs
for linear algebra [108], mesh processing [107], sewn quilts [38], and many more in the DSL
literature), in order to design a flexible and usable mechanism for building custom notations in
PENROSE. Another aspect of vocabulary correspondence is in STYLE: instead of specifying
numerical coordinates and sizes, STYLE writers write high-level constraints such as disjoint
and contains. In our experience, these constraints appear to be more natural to specify in many

106

cases, as they are closer to how we tend to describe spatial relations in natural language. [140]
Future work needs to systematically examine the naturalness and usability of STYLE’s constraint-
based layout specification and potentially compare them with alternate approaches such as direct
manipulation, template-based programming, and sampling to further investigate our observation.

The addition of the layout optimizer in the PENROSE system often extends the feedback loop in
the authoring process, but also presents opportunities to improve live engagement of diagramming
tools. First, the layout optimizer takes time to compute layout, delaying the visual feedback of
any changes to the PENROSE source programs by up to seconds (Section 4.5.8 and Appendix E).
Second, the high-level nature of STYLE makes it more challenging to achieve programmatic
direct manipulation. Systems such as Sketch-n-Sketch [75] bidirectionally synchronize changes to
both the source program and rendered diagram because the internal representations (SVG source
and manipulable graphical elements on the canvas) are relatively close to each other in terms
of granularity, e.g., a <circle> corresponds to a rendered circle on the interface. PENROSE’s
STYLE, on the other hand, is a higher-level specification that matches on a set of all possible
SUBSTANCE programs. Therefore, any change to the rendered diagram needs to be interpreted by
the system and reflected to other diagram instances. There is, though, potential benefits to having
the layout optimizer because it can help preserve visual relationships when the user interacts with
the diagram. We discuss future directions on this topic in Section 7.2.4.

The design of STYLE presents new opportunities and challenges for exploration support. As
showcased in examples such as Figure 4.23, Figure 4.19 and Figure 4.20, the separation of STYLE

and SUBSTANCE allows the user to explore styling alternatives of the same diagram content,
which is typically difficult to do in traditional drawing tools without having to re-do the entire
diagram. On the other hand, refining styling for one diagram instance may be challenging with
STYLE, as the diagramming is effectively programming a family of diagram when changing
STYLE. Future work should investigate how users interact with PENROSE when (1) designing
multiple STYLE alternatives concurrently and (2) iterating on one specific STYLE to inform future
work on STYLE.

7.2.2 Composable visual representations

In Section 4.7.3, we discussed PENROSE’s limitations in reusing shared visual elements and
constraints across multiple STYLE files. While code duplication and multiple versions of STYLE

may be manageable on a small scale, we envision building a broader ecosystem of diagrams
and this requires more flexible reuse mechanisms. Therefore, we suggest composability as the
main design goal for improving PENROSE. The existing layout primitives are an example of
composability: authors can reuse and combine multiple primitives to form new layout problems.
The disjoint and contains constraints used in Figure 4.19 are examples of visual layout
primitives provided by PENROSE. Many different STYLE programs need to talk about shapes
that must not overlap or must be nested, for instance, so we’ve developed a mathematical
framework [122] to describe these for arbitrary shapes. Using the signed distance function

φA(x) =

{
−d(x, ∂A) x ∈ A,

d(x, ∂A) x /∈ A.
where d(x, ∂A) = min

y∈∂A
|x− y|

107

and the Minkowski difference A − B = {a − b : a ∈ A, b ∈ B}, we can perform layout by
composing together these two operations in various ways:

disjoint(A, B) ⇐⇒ minimize max(0,−φA−B(0))

contains(A, B) ⇐⇒ minimize max(0,−φA{−B(0))

overlapping(A, B) ⇐⇒ minimize max(0, φA−B(0))

We find these Minkowski penalties particularly useful for label placement, which is often a very
tedious subtask of diagramming. To support STYLE construction, PENROSE provides a library
of over 200 built-in functions and over 50 pre-defined layout constraints and objectives. These
functions and primitives are useful across many domains, and are thus reused in many STYLE

files.
Looking forward, we plan to allow diagrammers to create modules of visual components and

layout patterns. Through this mechanism, an author can draw together multiple different modules
they need for their own diagram. And these modules can themselves be composed from other
modules: for instance, a module for visualizing complex analysis might make use of lower-level
modules for visualizing a coordinate plane and plotting curves, but build on top of that with
domain-specific visuals for singularities in holomorphic functions. In addition to user-defined
modules, there are also opportunities to build domain-independent visual techniques, such as
individual object-level highlighting or annotations, into our languages or as standard library
modules. We believe this composable approach will open up new possibilities for diagrammers
to collaborate and create more flexible, reusable, and expressive visual representations. Going
forward, we plan to survey existing compose mechanisms such as modules, type systems, and
package ecosystems to inform our design for PENROSE.

7.2.3 Knowledge-infused problem variation

Section 6.5.4 discusses how the domain-agnostic nature of EDGEWORTH may sometimes lead
to difficulties of finding diagrams that match authors’ intents. Notably, EDGEWORTH currently
does not provide an easy way for authors to express their preferences in the kinds of diagram
variations they want to generate. Future work should investigate possible ways to both encode
domain-expertise in EDGEWORTH, and allow authors to steer EDGEWORTH to pedagogically
useful directions.

One possible direction is to integrate Large Language Models (LLMs) into EDGEWORTH.
Since LLMs are trained on the text of the entire internet, they may contain enough knowledge to
suggest pedagogically useful positive and negative edge cases. Further, LLMs’ natural language
capabilities can also help build a flexible interface for authors to express their intents.

To turn these conceptual edge cases into diagrams, PENROSE needs SUBSTANCE programs.
Therefore, we will first test LLMs capability to generate SUBSTANCE programs.

Consider the case of a teacher authoring the example scenario (Section 5.3.1.1): imagine the
teacher specifying the diagram in natural language and an augmented version of EDGEWORTH

will prompt an LLM to generate the example diagram in SUBSTANCE. In preliminary work, we
tested this use case and showed that GPT-4 does not do a good job of generating low-level visual
code like SVG [86]. In contrast, when prompted carefully, GPT-4 can generate SUBSTANCE

108

programs which yield correct and legible diagrams.
Assuming reliable SUBSTANCE generation capability, an LLM may use the author’s inputs

(i.e., example scenario SUBSTANCE and diagram and diagram choices in the mutant pool) together
with its embedded domain knowledge to generate pedagogically useful edge cases. EDGEWORTH

may use a mix of the existing mutation algorithm (Section 5.3.3) and an LLM to generate
SUBSTANCE programs, for a balance of examples/counterexamples and edge cases. To iterate on
the mutant pool, the author picks multiple diagrams in the pool and the LLM can be prompted
again with the author’s choices in its context to future generate more diagrams based on the
author’s need.

We note a few challenges with the aforementioned approach. First, LLMs may need help
on generating SUBSTANCE code because SUBSTANCE programs are few in number comparing
with other languages in LLMs’ training set. In addition to prompt-engineering, future work can
experiment with LLM agents [188] so that authors can provide more granular input and feedback
to the model. Second, code and natural language may be insufficient to produce high-quality
problems, and future work should try leveraging the visual output of EDGEWORTH. The recent
rise of visual question-answering (VQA) datasets and benchmarks shows a growing interest
in improving LLMs visual reasoning capabilities [112, 14, 57, 115]. While LLMs’ ability to
reason with just images is still unclear [146], all diagrams produced using EDGEWORTH have
both symbolic (i.e., SUBSTANCE, STYLE, and DOMAIN) and visual (i.e., the output SVGs)
representations. Future research should investigate how to incorporate both representations in
prompting, fine-tuning, and potentially pre-training of LLMs so that models will be capable of
producing high-quality diagrams for all desirable diagram classes.

7.2.4 Interactive diagrams
Diagrams live in the context of surrounding text, overlaid annotations, and human gestures. The
web opens up opportunities for even richer in-context interaction. In education, though students
spend more time on digital platforms, they often see diagrams that are presented exactly as
before: pixelated, static, and ornamental. In contrast with a static diagram, a semantics-preserving
interactive diagram allows students to rapidly explore alternatives, understand the underlying
rules of a visual representation, and receive instant feedback on their actions [97]. Meaningful
interaction with diagrams helps students move from passive recognition to active synthesis of
visual representations [99].

Sadly, interactive diagrams are scarce in the wild. Most interactive documents require authors
to be proficient in general-purpose programming and have decent knowledge in handling low-level
events like mouse down/up, hover, etc. As a result, a simple interactive diagram often takes up
100s of lines-of-code and can be hard to debug [126, 105]. Additionally, because interactive
diagrams change a lot, authors often need to reason about a collection of diagrams, making the
task even harder.

PENROSE and EDGEWORTH elevate the semantics of diagrams from low-level primitives
to mathematically meaningful notations. Specifically, PENROSE encodes both the translational
semantics of how notations are translated to diagrams, and the visual semantics of how shape
primitives relate to each other expressed as constraints. By exploiting both, we can automatically
support semantics-preserving interactive diagrams. One promising direction of future work is

109

to investigate how to build interactive diagram activities that are automatically derived from
PENROSE diagrams without extensive programming effort. In short, I propose to (1) simplify
programming interactive diagrams and (2) provide students with rich, automated feedback by
leveraging the encoding of visual representations.

7.3 Concluding remarks
Curiously, building authoring tools for rich, interactive diagrams, narratives, and learning activities
seems just the right amount of material for a second dissertation,1 or a full-time job.

1In the spirit of Barik [8]

110

Appendix A

Diagrammer Semi-Structured Interview
Protocol

A.1 Introduction and Kick-off

1. Interviewer(s) self-introduction

2. Introduction to the study: Thanks again for participating in our research. We would like to
know your visualization process and diagramming experience to inform our design of the
next generation of visualization tools that we are currently working on.

3. What do you mostly work on?

4. Do you use visualization? By“visualization”we are not only referring to physical diagrams,
but also to“pictures in your head.”

A.2 Past Diagramming Experience

1. What was the last visualization you made?

(a) If answered with a mental visualization that only happened conceptually:

i. What did you visualize?

ii. Why didn’t you draw it?

iii. What was the last diagram you made? (jump to physical visualization part)

(b) If answered with a physical diagram: (diagram questions)

i. What did you visualize?

ii. For what purpose did you produce the visualization?

iii. Can you tell us about the process in which you came up with and produced the
diagram?

iv. What was the most challenging/time-consuming/tedious part of making this
particular diagram?

111

v. Can you give me a couple more examples of diagrams you’ve created with
purpose X?

2. Can you remember one diagram you made that you are most proud of?

(a) Ask diagram questions

(b) Why are you proud of it?

3. Can you remember the most challenging and/or time-consuming diagram you made?

(a) Ask diagram questions (i), (ii), (iii)

(b) What made it challenging?

(c) What took so long?

4. Are there diagrams that didn’t make it into the final version of a particular work, such as a
paper or a slide deck, you have done but were included in the drafts?

(a) Why were they not included?

A.3 Diagramming Practice and Tools

1. What diagramming tools, libraries, and/or packages are you familiar with?

(a) Which tools do you currently use? Tell me about them.

i. If multiple tools are mentioned:

A. Which one(s) do you use most frequently?

B. In what cases is each of them used?

C. Do you use multiple of them at a time?

ii. If a single tool is mentioned:

A. Why do you consistently use it?

(b) Can you tell me about the tools you know but no longer use, if any?

A.4 Reuse Questions

1. Introductory questions

(a) Do you ever use earlier diagrams as a basis for new diagrams?

(b) Are there features of some of your diagrams that are common?

2. After the introduction

(a) What is the process you use to start from one diagram and move the next?

(b) What aspects of the starter diagrams are you making use of?

(c) What is the most tedious part of this process?

(d) Do you use any features of your tool to make this process easier?

112

(e) Are there any limitations to this tool?

3. Meta-questions

(a) How did you borrow feature X from diagram A to make diagram B?

(b) What tool support do you take advantage of (e.g. style libraries, templates, copy and
paste of code, etc.)?

(c) When is the tool support inadequate for you to reuse your diagrams?

(d) What reuse work is particularly tedious and burdensome?

A.5 Audience Reception
1. How do people interact with your diagrams?

2. What do students, readers, audience members, peers, reviewers, etc. do?

3. Do they talk about the diagram, point to parts of it, use it in relation to some prose?

113

114

Appendix B

Diagrammer Interview Codebook

This codebook categorizes various aspects related to the process of creating diagrams, the reuse
of diagram components, adoption of tools, and individual abilities. Each section breaks down
these aspects into themes and subcategories based on observed behaviors and statements during
interviews with domain experts, described in Chapter 3.

• Personal Background
Gender: Gender of the interviewee.

Occupation: Professional role of the interviewee.

CMU / Non-CMU: Whether the interviewee is affiliated with Carnegie Mellon Uni-
versity.

American / Non-American: Nationality or cultural background of the interviewee.
• Reusability

Starting from an Existing Diagram: Modifying an existing file or project, created
either by oneself or another, to develop a new diagram.

Reuse Lower-Level Components: Reuse basic components such as shapes, colors,
and properties of the diagram.

− Representation Reuse: Coded as reusing shapes and properties in a new context.

Reuse Representation Concepts: Reusing established mappings, such as “vector as
arrow,” to maintain visual consistency across diagrams.

Version Control in Diagramming (DM) Tools: ability to manage versions and return
to previous versions within a diagramming tool.

Reuse Across Projects: Using the same diagram in multiple contexts, such as different
research papers.

Version Control in Programming Language (PL) Tools: as with diagramming tools,
enabling prior-version management (coded together with DM version control in this
system).

• Using Multiple Tools for Diagram Creation
For Vector Graphics: Converting output from one tool to a vector format (e.g., SVG)

115

for scalability.

For Annotation: Importing a partially complete diagram into another tool for adding
annotations (e.g., arrows, text, LaTeX labels) without modifying the original content.

For Accurate Rendering: Generating base data or components in one tool and import-
ing them into another for final diagram completion, especially in cases involving data
or physical phenomena.

• Diagramming Process
Choosing an Appropriate Representation: Surveying existing representations or de-
signing new mappings from abstract objects to visual elements (e.g., vector to arrow).

Iterative Process: Returning to prior versions or generating different versions of a
representation by tweaking configurations or style (e.g., layout, color).

− Instance: A unique version of a representation (e.g., a red arrow vs. a black
arrow).

Sketching: Initial, low-fidelity diagram creation as a preliminary step.

Other: Additional notes on the process, if any.
• Adoption of New Tools

Interest in New Tools: Exploring new tools, even without full commitment to usage.

− “I Should Try This Tool”: Intent to try but haven’t yet.

− “I Tried and Didn’t Like It”: Trialed but not adopted.

Adoption Reasons: Objective or situational motivations for trying a tool, such as
advisor recommendation.

Tool Rationale: Specific advantages for adopting a tool based on task needs or types.
• Precision in Diagram Creation

Feedback Cycle: Processes or tools that facilitate feedback during diagramming.

Selection: precision of shape/object selection in the user interface.
• Learning Methods for Visualization Tools

Reading the Manual: Formal study of tool documentation.

Trial-and-Error: Learning through experimentation.

Searching Online: Seeking guidance from diverse online sources.
• Specific Tools

Pros and Cons: Evaluations of tools, often based on interviewee feedback.

Criteria for “Good” Diagrams: Characteristics defining quality or effectiveness in
diagrams.

• Self-Reported Abilities
Hand-Drawing Ability: Interviewees’perception of their drawing skills.

− Good at Drawing: High confidence in drawing skills.

116

− Not Good at Drawing: Low confidence, with possible understatements due to
humility.

Programming Ability: Skill level in programming as it pertains to diagramming.

Diagram Types: Preference for data-intensive (empirical) vs. conceptual diagrams.
• Tool Preferences

Direct Manipulation vs. Programmatic: Preference for hands-on tool usage versus
code-driven diagramming.

• Diagram Frequency
Number of Diagrams Made: Volume of diagram creation, providing insight into
experience level.

117

118

Appendix C

Walkthrough of a PENROSE Trio for Euler
Diagram

In this section, we walk through a trio of SUBSTANCE, STYLE, and DOMAIN programs for
making Euler diagrams of sets in PENROSE. We demonstrate how to define sets, specify subset
relationships, and use constraints to adjust the layout of Euler diagrams. Note that the syntax
in this appendix reflects the latest of @penrose/core@4.0.0-alpha.3, which includes some
changes since the writing of Chapter 4.

The goal of this walkthrough is to create Euler diagrams of sets represented as circles with
text labels, as shown in Figure C.1.

Figure C.1: Example Euler diagrams made in PENROSE

C.1 DOMAIN program for sets

1 type Set
2 predicate Subset(Set s1, Set s2)

We first define the language of sets and set relations in the DOMAIN language. DOMAIN lets
the user declare possible concepts in diagrams for a particular domain. Here we define sets as
a type of object (Line 1), and subset relations as a predicate that takes two sets as arguments
(Line 2).

119

C.2 Declaring Sets and Subset Relations in SUBSTANCE

Once DOMAIN is defined, we can define the sets and their relationships in the declarative format
of SUBSTANCE. The program below defines four sets: A, B, C, and D (Line 1). We state that
B,C,D ⊂ A and C ⊂ D (Line 2–5), the SUBSTANCE program and one corresponding diagram
shown in Figure C.2.

1 Set A, B, C, D
2 Subset(B, A)
3 Subset(C, A)
4 Subset(D, A)
5 Subset(C, D)
6 AutoLabel All

Figure C.2: An example SUBSTANCE program in the set theory domain illustrated with the Euler diagram STYLE.

Line 6 generates label strings from the SUBSTANCE identifiers (e.g., the string values such
as "A" and "B") automatically. The user has an option to specify labels that are different from
the identifiers by an explicit label declaration statement such as Label A Γ . We will
discuss how these labels are used for styling in the next section.

C.3 Styling Euler Diagrams using STYLE

With the objects and relations declared, we need to specify their visual representations. In
PENROSE, STYLE is the language that maps from abstract objects to visual icons and relations.
For every STYLE program, we need to define the canvas size. In this case, we specify a canvas
width and height of 200 pixels. Note that PENROSE generates vector images, so the size is only
relative to the sizes of shapes on the canvas.

1 canvas {
2 width = 200
3 height = 200
4 }

The visual appearance of the sets is determined by the STYLE program. The selector on Line 1
selects all Set in the SUBSTANCE program (Section 4.3.3.1). Lines 2–5 declare shapes and visual
relations for each Set.

1 forall Set X {
2 X.shape = Circle { fillColor: #8C91C277 }
3 X.text = Equation { string: X.label }

120

4 ensure contains(X.shape, X.text)
5 X.text above X.shape
6 }

Line 2 represents each set as a Circle with a specific fill color, specified using a hexadecimal
RGBA value of a translucent purple. Note that the size and position of the Circle is left
unspecified, the concrete values of which will be automatically determined by PENROSE at
runtime.

Similar to Line 2, Line 3 declares an Equation shape for each Set. Equation is a built-in
shape type that renders as a LATEX label in math mode. The string content of the Equation is
determined by the string property. Here we use X.label to refer to the label text specified in
SUBSTANCE (Appendix C.2). The label field is reserved for label strings specified in SUB-
STANCE. Since the SUBSTANCE uses AutoLabel All, each set will get an Equation shape with
a string content of its SUBSTANCE identifier, A,B,C and so forth.

Now that we have both the Circle and Equation for each Set, we need to position them
properly so the Equation is always in the Circle for clear labeling. Line 4 specifies a constraint
that ensures that the label always appears inside its corresponding circle. contains is one of the
constraint functions in the PENROSE library1, which “Require that a shape contains another shape,
based on the type of the shape, and with an optional padding between the sizes of the shapes.”

Finally, the layering statement on Line 5 ensures that the Equation is always on top of the
Circle for good label visibility. Internally, PENROSE takes these partial orderings (e.g., A.text
is above A.shape) and produce a global orderings in the rendered SVG that respects all layering
statements in STYLE. In the case of cycles in the partial orderings, STYLE produces a cycle-free
layer list via an algorithm that attempts to break cycles while preserving partial orderings as much
as possible. Figure C.3 show an example diagram generated by PENROSE after writing down this
STYLE block.

Figure C.3: PENROSE-generated diagram after the forall Set X Euler diagram STYLE block.

The subset relationships between the sets are handled by another block of STYLE code. Note
1https://penrose.cs.cmu.edu/docs/ref/style/functions#constraint-contains

121

https://penrose.cs.cmu.edu/docs/ref/style/functions#constraint-contains

the where clause in the selector on Line 1 will match on all Sets with Subset predicates declared
between them.

1 forall Set X, Y where Subset(X, Y) {
2 ensure contains(Y.shape, X.shape)
3 ensure disjoint(Y.text, X.shape)
4 X.shape above Y.shape
5 }

Line 2 ensures that whenever a Set X is a Subset of another Set Y , the Circle representing
X is always inside the Circle representing Y . The ‘disjoint‘ constraint on Line 3 prevents
the label of the larger set Y from overlapping the circle of the subset X for better label clarity.
Line 4 makes sure the subset Circle (and by extension the Equation too) is always on top of the
superset Circle.

C.4 Layout Optimization and Rendering

Figure C.4: Variations of the same SUBSTANCE program for sets rendered with different intializations using the
“resample” mechanism in PENROSE.

Once we have defined our sets, subset relations, and visual constraints, we can execute the
Penrose program to generate the diagram. Each time the diagram is generated, PENROSE ensures
that all constraints are satisfied, and we can even modify the SUBSTANCE program (e.g., adding
or removing sets or relations) while maintaining the visual consistency of the diagram.

By using the “resample” button in Penrose, we can regenerate the diagram with different
initializations while keeping the subset relations intact. Figure C.4 shows 10 samples generated
by PENROSE for the same SUBSTANCE program.

122

Appendix D

Three STYLE Programs for the PENROSE
Set Theory Domain

D.1 Euler

1 canvas {
2 width = 800
3 height = 700
4 }
5
6 forall Set x {
7 shape x.icon = Circle { }
8 shape x.text = Equation {
9 string : x.label

10 fontSize : "32px"
11 }
12 ensure contains(x.icon, x.text)
13 encourage norm(x.text.center - x.icon.center) == 0
14 layer x.text above x.icon
15 }
16
17 forall Set x; Set y
18 where Subset(x, y) {
19 ensure disjoint(y.text, x.icon, 10)
20 ensure contains(y.icon, x.icon, 5)
21 layer x.icon above y.icon
22 }
23
24 forall Set x; Set y
25 where Disjoint(x, y) {
26 ensure disjoint(x.icon, y.icon)
27 }

123

28
29 forall Set x; Set y
30 where Intersecting(x, y) {
31 ensure overlapping(x.icon, y.icon)
32 ensure disjoint(y.text, x.icon)
33 ensure disjoint(x.text, y.icon)
34 }

D.2 Euler 3D

1 canvas {
2 width = 800
3 height = 800
4 }
5
6 forall Set x {
7 x.shape = Circle {
8 strokeWidth : 0.
9 }

10
11 x.shading = Image {
12 center : x.shape.center
13 width : x.shape.r * 2.0
14 height : x.shape.r * 2.0
15 href : "shading.svg"
16 }
17
18 x.shadow = Image {
19 href : "set-theory-domain-shadow.svg"
20 width : x.shape.r * 2.15
21 height : x.shape.r * 2.22
22 center : (x.shape.center[0] + 0.03 * x.shading.width, x.shape.center[1] -

0.051 * x.shading.height)
23 }
24
25 x.text = Equation {
26 string : x.label
27 fillColor: rgba(1.0, 1.0, 1.0, 1.0)
28 width: 0.4 * x.shape.r
29 height: 0.4 * x.shape.r
30 }
31
32 ensure contains(x.shape, x.text)
33 ensure lessThan(20, x.shape.r)

124

34 encourage sameCenter(x.text, x.shape)
35
36 x.shape below x.text
37 x.shading below x.shape
38 x.shadow below x.shading
39 }
40
41 forall Set x; Set y
42 where Subset(x, y) {
43 ensure disjoint(y.text, x.shape, 5.0)
44 ensure contains(y.shape, x.shape, 5.0)
45 x.shape above y.shape
46 y.text below x.shape
47 x.shadow above y.shape
48 }
49
50 forall Set x; Set y
51 where Disjoint(x, y) {
52 ensure disjoint(x.shape, y.shape)
53 }
54
55 forall Set x; Set y
56 where Intersecting(x, y) {
57 ensure overlapping(x.shape, y.shape)
58 ensure disjoint(y.text, x.shape)
59 ensure disjoint(x.text, y.shape)
60 }

D.3 Tree

1 canvas {
2 width = 800
3 height = 700
4 }
5
6
7 Colors {
8 color black = rgba(0.,0.,0.,1.)
9 color red = rgba(1.,0.,0.,1.)

10 color green = rgba(0.,.7,0.,1.)
11 color blue = rgba(0.,0,1.,1.)
12 color white = rgba(1.,1.,1.,1.)
13 color lightGray = rgba(.8,.8,.8,1.)
14 }

125

15
16 Global {
17 shape box = Rectangle {
18 center: (0.,0.)
19 fillColor: none()
20 strokeColor: Colors.lightGray
21 strokeWidth: 2.
22 width: canvas.width
23 height: canvas.height
24 }
25
26 scalar setRadius = 18.
27 }
28
29 forall Set x {
30
31 vec2 x.center = (?,?)
32
33 x.icon = Text {
34 center: x.center
35 string: x.label
36 fontFamily: "Courier"
37 fontSize: "20px"
38 fontWeight: "bold"
39 fillColor: Colors.black
40 }
41
42 x.bounds = Circle {
43 center: x.center
44 r: Global.setRadius
45 fillColor: none()
46 }
47 }
48
49 forall Set x; Set y {
50 -- Try to make sure no labels overlap
51 encourage notTooClose(x.bounds, y.bounds, 5.0)
52 }
53
54
55 forall Set x; Set y
56 where Subset(x, y) {
57
58 vec2 p = x.center
59 vec2 q = y.center

126

60 vec2 u = unit(q-p)
61 scalar r = Global.setRadius
62
63 arrow = Line {
64 start: p + r*u
65 end: q - r*u
66 strokeWidth : 4.0
67 strokeColor : rgba(0.0, 0.0, 0.0, 1.0)
68 endArrowhead: "straight"
69 endArrowheadSize: .5
70 }
71
72 -- Position y above x
73 encourage above(y.bounds, x.bounds)
74
75 -- Have sets ’fight’ to be aligned with the superset’s x-position
76 encourage x.bounds.center[0] == y.bounds.center[0]
77 }

127

128

Appendix E

PENROSE Registry Benchmark

As described in Section 4.6, the PENROSE repository includes continuous integration tests that
compile, render, and benchmark a large set of diagrams for every commit to the repository. This is a
sample from commit d3c6dd0ab42d4f6fe64fa47f2ac5a1660c8e552e in the penrose/penrose
GitHub repository.

E.1 Data

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
set-theory-domain/tree-euler 0.1617 0.0623 0.0307 0.2860
set-theory-domain/tree-tree 0.1040 0.0441 0.0219 0.1790
group-theory/quaternion-
multiplication-table

0.4016 0.0079 0.1948 0.6215

walk-on-
spheres/SignedAngleOutside

0.3892 0.0076 0.0330 0.4783

spectral-
graphs/examples/hypercube

0.2600 0.0629 0.0244 0.3596

group-theory/quaternion-cayley-
graph

0.1219 0.0144 0.0200 0.1633

set-theory-domain/tree-euler-
3d

0.0849 0.0624 0.0735 0.2279

atoms-and-bonds/one-water-
molecule

0.0381 0.0035 0.0060 0.0577

structural-
formula/molecules/caffeine

0.4092 0.2345 0.1633 0.8212

walk-on-spheres/walk-on-stars 0.6441 0.1326 0.4755 1.2861
set-theory-
domain/continuousmap

0.0702 0.0116 0.0106 0.1047

mobius/mobius 0.0728 0.0451 0.0290 0.1587

129

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
linear-algebra-domain/two-
vectors-perp

0.0597 0.0054 0.0059 0.0853

tutorials/tutorial1 0.0080 0.0003 0.0011 0.0215
tutorials/tutorial2 0.0055 0.0001 0.0005 0.0163
tutorials/tutorial3 0.0214 0.0003 0.0031 0.0341
molecules/nitricacid-lewis 0.2605 0.0810 0.0115 0.3746
array-models/insertionSort 0.3978 0.0180 0.1119 0.5422
exterior-algebra/vector-wedge 0.0566 0.0051 0.0066 0.0791
shape-spec/all-shapes 0.0736 0.0009 0.4533 0.5397
shape-spec/arrowheads 0.0407 0.0021 0.0128 0.0643
graph-
domain/textbook/sec1/fig1

0.2401 0.2027 0.0120 0.4653

graph-
domain/textbook/sec1/fig2

0.2789 0.3640 0.0084 0.6626

graph-
domain/textbook/sec1/fig3

0.2997 0.4485 0.0104 0.7645

graph-
domain/textbook/sec1/fig4

0.3430 0.4748 0.0175 0.8461

spectral-
graphs/examples/hexagonal-
lattice

2.5054 0.4903 0.1132 3.1165

dinoshade/dinoshade 1.0746 0.0009 0.1289 1.2471
spectral-graphs/examples/star-
graph

2.9737 0.0925 0.0651 3.1643

spectral-graphs/examples/box 1.9651 0.0894 0.0737 2.1570
graph-
domain/textbook/sec1/fig5

0.3582 0.6457 0.0132 1.0435

graph-
domain/textbook/sec1/fig6

1.1834 2.6696 0.0156 3.8756

graph-
domain/textbook/sec1/fig7

0.1558 0.1536 0.0080 0.3232

graph-
domain/textbook/sec1/fig8a

0.4356 0.6583 0.0130 1.1136

graph-
domain/textbook/sec1/fig8b

0.2841 0.5315 0.0092 0.8318

graph-
domain/textbook/sec1/fig9

0.2205 0.2046 0.0192 0.4504

graph-
domain/textbook/sec1/fig10

0.2041 0.0820 0.0868 0.3805

graph-
domain/textbook/sec1/fig11

0.2947 0.1851 0.1356 0.6218

130

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
graph-
domain/textbook/sec1/fig12

0.3658 0.3410 0.1034 0.8170

graph-
domain/textbook/sec1/fig13

0.3410 0.4390 0.0116 0.7982

graph-
domain/textbook/sec2/fig3

0.5993 1.7477 0.0198 2.3737

graph-
domain/textbook/sec2/fig4

0.4177 0.9079 0.0158 1.3481

graph-
domain/textbook/sec2/fig5

0.6763 1.6441 0.0223 2.3497

graph-
domain/textbook/sec2/fig6

0.5970 1.2551 0.0129 1.8715

graph-
domain/textbook/sec2/fig9

1.0244 2.7261 0.0341 3.7915

graph-
domain/textbook/sec2/fig10a

0.2164 0.3068 0.0071 0.5362

graph-
domain/textbook/sec2/fig10b

0.2008 0.1741 0.0600 0.4415

graph-
domain/textbook/sec2/fig11a

0.1391 0.0262 0.0445 0.2173

graph-
domain/textbook/sec2/fig11b

0.1152 0.0194 0.0323 0.1729

graph-
domain/textbook/sec2/fig11c

0.1417 0.0551 0.0676 0.2703

graph-
domain/textbook/sec2/fig12

0.1248 0.0274 0.0526 0.2116

graph-
domain/textbook/sec2/fig13

1.0088 2.2440 0.0145 3.2750

graph-
domain/textbook/sec2/fig14

0.2433 0.2700 0.0242 0.5450

graph-
domain/textbook/sec2/fig16b

0.1621 0.0281 0.0543 0.2519

geometry-
domain/textbook_problems/c05p13

0.2135 0.0769 0.0070 0.3308

geometry-
domain/textbook_problems/c01p01

0.2054 0.0761 0.0064 0.2944

geometry-
domain/textbook_problems/c03p01

0.2099 0.0671 0.0078 0.2906

geometry-
domain/textbook_problems/c05p01

0.2103 0.0503 0.0079 0.2740

geometry-
domain/textbook_problems/ex

0.2727 0.1528 0.0190 0.4504

131

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
triangle-mesh-3d/two-triangles 0.1617 0.0239 0.0524 0.2540
random-sampling/test 0.3614 0.0257 0.0268 0.4265
geometry-
domain/textbook_problems/c11p12

0.2405 0.1207 0.0085 0.3785

molecules/sulfuric-acid 0.2970 0.1172 0.0082 0.4290
curve-examples/catmull-
rom/catmull-rom

0.0492 0.0387 0.0075 0.1099

word-cloud/example 0.1680 0.2567 0.0121 0.4469
geometry-domain/siggraph-
teaser

0.2532 0.0870 0.0224 0.3838

minkowski-tests/maze/non-
convex

0.0883 0.0753 0.0019 0.1759

lagrange-bases/lagrange-bases 0.0735 0.0371 0.0679 0.1929
hypergraph/hypergraph 0.3398 1.8090 0.0260 2.1863
persistent-homology/persistent-
homology

0.2384 0.9388 0.1117 1.3130

walk-on-spheres/laplace-
estimator

0.2168 0.0508 0.0575 0.3315

walk-on-spheres/poisson-
estimator

0.2304 0.0563 0.0452 0.3378

walk-on-spheres/nested-
estimator

0.3070 0.0901 0.0929 0.4969

walk-on-spheres/offcenter-
estimator

0.2174 0.0393 0.0546 0.3172

shape-distance/points-around-
star

0.2239 0.0160 0.0127 0.2649

shape-distance/points-around-
polyline

0.1556 0.0195 0.0125 0.1947

shape-distance/points-around-
line

0.1349 0.0083 0.0133 0.1626

shape-distance/lines-around-
rect

0.0585 0.0146 0.0193 0.1002

fake-3d-linear-
algebra/projection

0.0442 0.0091 0.0031 0.0670

animation/center-shrink-circle 0.0149 0.0095 0.0070 0.0425
graph-domain/other-
examples/hamiltonian-cycle

0.2869 0.4041 0.0106 0.7075

structural-
formula/reactions/methane-
combustion

0.3364 1.0808 0.0373 1.4689

molecules/glutamine 0.1487 0.0494 0.0713 0.2785

132

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
matrix-ops/tests/matrix-matrix-
addition

0.0923 0.0010 0.0121 0.1231

matrix-ops/tests/matrix-matrix-
division-elementwise

0.0927 0.0010 0.0106 0.1103

matrix-ops/tests/matrix-matrix-
multiplication-elementwise

0.0910 0.0010 0.0117 0.1093

matrix-ops/tests/matrix-matrix-
multiplication

0.0912 0.0010 0.0102 0.1084

matrix-ops/tests/matrix-matrix-
subtraction

0.0984 0.0017 0.0151 0.1206

matrix-ops/tests/matrix-
transpose

0.0850 0.0009 0.0074 0.0992

matrix-ops/tests/matrix-vector-
left-multiplication

0.0822 0.0008 0.0074 0.0960

matrix-ops/tests/matrix-vector-
right-multiplication

0.0834 0.0009 0.0071 0.0968

matrix-ops/tests/scalar-vector-
division

0.0864 0.0008 0.0106 0.1037

matrix-ops/tests/scalar-vector-
left-multiplication

0.0812 0.0008 0.0079 0.0961

matrix-ops/tests/scalar-vector-
right-multiplication

0.0810 0.0012 0.0072 0.0959

matrix-ops/tests/vector-vector-
addition

0.0851 0.0015 0.0111 0.1036

matrix-ops/tests/vector-vector-
division-elementwise

0.0904 0.0012 0.0077 0.1053

matrix-ops/tests/vector-vector-
multiplication-elementwise

0.0833 0.0008 0.0080 0.0976

matrix-ops/tests/vector-vector-
outerproduct

0.0950 0.0009 0.0093 0.1109

matrix-ops/tests/vector-vector-
subtraction

0.0860 0.0009 0.0060 0.0982

logic-circuit-domain/half-
adder

0.1062 0.0655 0.0108 0.1967

curve-examples/cubic-bezier 0.0923 0.3887 0.0101 0.5018
triangle-mesh-
2d/diagrams/cotan-formula

0.1652 0.0991 0.0100 0.2949

triangle-mesh-
2d/diagrams/concyclic-pair

0.1682 0.1122 0.0109 0.2969

triangle-mesh-
2d/diagrams/halfedge-mesh

0.1538 0.0165 0.0190 0.1955

133

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
triangle-mesh-
2d/diagrams/relative-
orientation

0.1464 0.0257 0.0089 0.1873

triangle-mesh-
2d/diagrams/triangle-centers

0.1400 0.0186 0.0058 0.1709

triangle-mesh-
2d/diagrams/angle-equivalence

0.2231 0.3366 0.0189 0.5857

timeline/penrose 0.3208 0.0925 0.1516 0.5773
graph-
domain/textbook/sec5/ex32

0.7038 3.1439 0.0475 3.9046

curve-examples/open-elastic-
curve

0.1996 0.2155 0.0052 0.4279

curve-examples/closed-elastic-
curve

0.1978 0.2665 0.0037 0.4753

graph-domain/other-
examples/arpanet

0.6853 2.8871 0.0568 3.6410

graph-domain/other-
examples/nyc-subway

0.8933 2.1443 0.0386 3.0854

fancy-text/fancy-text 0.1992 0.2492 0.0196 0.4784
curve-examples/blobs 0.7099 4.3173 0.0218 5.0689
curve-examples/space-curves 0.6714 0.5937 0.0158 1.3451
geometric-queries/ray-
intersect/test-group

0.6447 0.0112 0.0477 0.7143

ray-tracing/path-trace 0.0853 0.0008 0.0203 0.1231
ray-tracing/bidirectional 0.1011 0.0010 0.0156 0.1238
ray-tracing/next-event-
estimation

0.1126 0.0125 0.0723 0.2038

geometric-queries/test 0.2136 0.0125 0.0217 0.2630
geometric-queries/closest-
point/test-group

0.1064 0.0299 0.0164 0.1650

geometric-queries/closest-
point/test

0.0606 0.0028 0.0041 0.0737

geometric-queries/closest-
silhouette-point/test

0.0639 0.0015 0.0062 0.0842

geometric-queries/ray-
intersect/test

0.5821 0.0230 0.0552 0.6706

box-arrow-diagram/computer-
architecture

0.7727 3.5983 0.0328 4.4158

stochastic-process/stochastic-
process

2.9791 0.0211 0.3926 3.4046

stochastic-process/epsilon-
shell/AbsorbingBoundary

1.7551 0.0199 0.1634 1.9586

134

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
solid/eigenspace - - - 0.1424
solid/triangles - - - 0.0621
solid/vectors - - - 0.0559
tsne/tsne 1.0705 1.6735 0.0540 2.8082
spectral-graphs/examples/4x4-
sudoku-graph

0.2802 0.0782 0.0423 0.4081

spectral-
graphs/examples/dodecahedral-
graph

0.1783 0.0531 0.0223 0.2598

matrix-
library/crossProductMatrix

0.0463 0.0002 0.0047 0.0684

matrix-library/diagonal2d 0.0255 0.0002 0.0018 0.0415
matrix-library/diagonal3d 0.0484 0.0002 0.0033 0.0585
matrix-library/identity2d 0.0259 0.0002 0.0017 0.0333
matrix-library/identity3d 0.0781 0.0002 0.0050 0.0891
matrix-library/inverse2d 0.0262 0.0002 0.0018 0.0344
matrix-library/inverse3d 0.0477 0.0002 0.0041 0.0573
matrix-library/matrix2d 0.0271 0.0002 0.0019 0.0349
matrix-library/matrix3d 0.0460 0.0002 0.0048 0.0566
matrix-library/outerProduct2d 0.0315 0.0002 0.0018 0.0408
matrix-library/outerProduct3d 0.0476 0.0002 0.0032 0.0564
matrix-library/rotate 0.0262 0.0002 0.0018 0.0335
matrix-library/rotate2d 0.0261 0.0002 0.0018 0.0332
matrix-library/rotate3d 0.0493 0.0002 0.0033 0.0583
matrix-library/rotate3dh 0.0493 0.0002 0.0043 0.0591
matrix-library/scale2d 0.0258 0.0002 0.0017 0.0337
matrix-library/scale3d 0.0454 0.0002 0.0047 0.0557
matrix-library/shear2d 0.0244 0.0002 0.0017 0.0313
matrix-library/shear3d 0.0476 0.0002 0.0032 0.0566
matrix-library/skew2d 0.0270 0.0002 0.0017 0.0346
matrix-library/translate2d 0.0245 0.0002 0.0017 0.0318
matrix-library/translate3dh 0.0481 0.0002 0.0030 0.0567
atoms-and-bonds/wet-floor 0.0817 0.1964 0.0133 0.3020
curve-examples/offset 0.0715 0.1809 0.0149 0.2761
curve-examples/frenet-frame 0.0652 0.0665 0.0163 0.1572
curve-examples/osculating-
circle

0.0386 0.0386 0.0035 0.0883

curve-examples/evolute-of-
cardioid

0.4176 0.0018 0.0248 0.4511

135

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
spectral-
graphs/examples/truncated-
cube-graph

0.2267 0.0348 0.0195 0.2906

spectral-graphs/examples/torus 4.2913 0.2571 0.0978 4.6534
spectral-
graphs/examples/mobius

3.6053 0.3229 0.0775 4.0122

impossible-ngon/ngon 1.0286 0.0024 0.1594 1.2033
impossible-ngon/parameters 0.0456 0.0005 0.0061 0.0632
impossible-ngon/nsides-
chirality

0.2108 0.0027 0.0735 0.2989

spectral-
graphs/examples/periodic-
hexagonal-lattice

1.1223 0.1776 0.0368 1.3448

alloy-models/dining-
philosophers

0.1903 0.0012 0.0088 0.2465

alloy-models/message-passing 0.1825 0.6364 0.0241 0.8554
alloy-models/ring-leader-
election

0.0632 0.0531 0.0082 0.1370

alloy-models/river-crossing 0.0316 0.0026 0.3057 0.3518
alloy-models/workstations 0.1052 0.2446 0.0180 0.3799
alloy-models/generic 0.4811 1.5036 0.0173 2.0151
Dynamics/Lyapunov 0.0475 0.0036 0.0093 0.0716
fractals/chaos-game/sierpinski-
triangle

1.4528 0.1112 0.5393 2.1141

fractals/chaos-game/vicsek-
fractal

2.0627 0.2556 0.5438 2.8707

fractals/l-systems/tree 0.3863 0.0021 0.0925 0.4907
fractals/ifs/ifs 1.6085 0.0252 0.5028 2.1466
envelopes/nephroid 0.3775 0.0676 0.0705 0.5256
dataviz/linearreg 0.0484 0.0017 0.0075 0.0676
dataviz/residual 0.0266 0.0017 0.0026 0.0397
geometry-domain/complementary-
angles

0.1802 0.2930 0.0084 0.4983

alloy-models/icicle-plot-file-
system

0.1116 0.0176 0.0216 0.1622

interactive/ellipse-rays 0.5733 0.0033 0.0921 0.6794
interactive/viewport 0.7039 0.2762 0.0156 1.0459
interactive/planets 0.0189 0.0019 0.0081 0.0391
set-potatoes/relation-not-a-
function

0.0530 0.0055 0.0067 0.1161

136

Diagram ID Compile (s) Optimize (s) Render (s) Total (s)
set-potatoes/injections-post-
inverses

0.0932 0.0626 0.0135 0.1764

set-potatoes/non-injection-not-
monomorphism

0.1130 0.0909 0.0165 0.2279

set-potatoes/surjections-pre-
inverses

0.1328 0.0563 0.0152 0.2119

set-potatoes/non-surjection-
not-epimorphism

0.1104 0.2924 0.0253 0.4517

137

138

Appendix F

PENROSE Registry Diagrams

This section includes all diagrams rendered by commit d3c6dd0ab42d4f6fe64fa47f2ac5a1660c8e552e
in penrose/penrose. Related performance data can be found in Appendix E.

139

140

141

142

143

144

145

146

Appendix G

EDGEWORTH Formative Interview Protocol

G.1 Introduction
• Today I’d like to first learn a bit about how you use and/or author diagrams for your work.
• Is it okay for me to record this session? The recording will only be shared within the team

for research purposes.

G.2 Needs and Requirements
• What do you teach? (subject, students, institution)
• Do you use diagrams in your instructional content? (slides, handouts, problem sets,

exams)
• What visual problems do you want to make?

Can you show me some examples of visual problems you have created?

Do you make families of related problems? How many instances in each family?
Why?

What are the diagram types?

− Do you have different problem types within these types of diagrams?

What learning goal is served by the problem as a whole?

− What role does the diagram play?

− Do students manipulate or create diagrams as part of solving problems? If so,
can you give an example? If not, would you like to develop problems where they
could manipulate or create a diagram?

− What is the relationship between instructional material diagrams and problem
diagrams?

• Do students learn about graphical representations, like charts and graphs of functions
in your classes?

147

If so, are they tested on them? Do they do exercises that contain diagrammatic contents
(problems with pictures as a part of the prompt, or a part of the answer)?

Are students expected to participate in drawing in class, either physically or digitally?

G.3 Tooling
• How do you create and maintain your diagrams?

What are the tools involved?

What are the barriers you encountered when creating or maintaining these diagrams?

How did you solve some, if any, of your problems caused by these barriers?
• Does your tool help maintain the relationship between prose/symbolic prompt and diagram?

G.4 Authoring Process
• What is the process for creating new problems?
• How are the variations designed?
• Do students generate diagrams?

G.5 Meta
• What are your ideal problem types?

What’s missing in E-learning platforms?

What’s missing from the theory of learning?
• What (pedagogically useful) problem types are not created because of tool limitations?
• What diagram/problem types appear in other physical mediums (e.g., textbooks) but not in

e-learning platforms?

148

Appendix H

EDGEWORTH Translation Problem Dataset

This section includes all 31 collected problems described in Section 5.4.

149

Choose the correct Lewis structure for .

1

C

H

N

2

H

C

N

3

C

H

N

4

C

H

N

HCN Choose the correct Lewis structure for .

1

C

H H

H H

2

C

H

H

H

H

3

C

H

H

H

H

4

C

H

H
H

H

CH 4

Choose the correct Lewis structure for .

1

Cl

Cl

ClP

2

ClCl

Cl

P

3

ClCl

Cl

P

4

Cl

Cl

Cl
P

PCl 3 Choose the correct Lewis structure for .

1

O

O

O

O

Xe

2

O

O

O

O
Xe

3

O

O O

O

Xe

4

O

O

O

O

Xe

XeO 4

Choose the correct Lewis structure for .

1

C
Cl

Cl

O

2

C
Cl

Cl

O

3

C

Cl

Cl

O

4

C

Cl

Cl

O

COCl 2 Choose the correct Lewis structure for .

1

N

N

2

N

N

3

N

N

4
N

N

N 2

Choose the correct Lewis structure for .

1

N

N

H

H

H

H

2

NN

H

H
H

H

3

N

N

H

H

H

H

4

N

N H

H

H

H

N H 2 4 In which of the following diagrams are points , , collinear?

1 2

3 4

B D E

Which of the following diagrams contains exactly 2 pairs of complementary angles?

1 2

3 4

In which of the following diagrams is the statement true?

1 2

3 4

∠ADC = 2(m∠ADB)

Which diagram illustrates and as alternate interior angles?

1 2

3 4

∠JKM ∠KML In which of the following diagrams are triangles an congruent?

1 2

3 4

△DEC △DEA

In which of these diagrams, can you �nd the value of given the value of ?

1 2

3 4

∠BCE x Which diagram shows that is a midsegment of ?

1 2

3 4

HK △GJF

Which diagram shows as the incenter of ?

1 2

3 4

P △JKL Which of the following diagrams shows that is a parallelogram?

1 2

3 4

JKLM

In which of the following diagrams is a parallelogram?

1 2

3 4

ABCD In which of the following diagrams is the orthocenter of ?

1 2

3 4

G △FGH

In which of the following diagrams are the two triangles similar?

1 2

3 4

In which of the following diagrams is similar to ?

1 2

3 4

△PQR △TSR

In which of the following diagrams is congruent to ?

1 2

3 4

△DEF △ABC Which of the following diagrams is the length of represented by ?

1 2

3 4

PS

PU

PQ×PR

In which of the following diagrams are ?

1 2

3 4

AD = BC In which of the following diagrams is congruent to ?

1 2

3 4

△ABC △BCD

Which of the following diagrams are bipartite graphs?

1

𝑐𝑐

𝑑𝑑

𝑒𝑒

𝑎𝑎

𝑏𝑏

2

𝑐𝑐

𝑑𝑑

𝑒𝑒

𝑎𝑎

𝑏𝑏

3

𝑐𝑐

𝑑𝑑

𝑒𝑒

𝑎𝑎

𝑏𝑏

4

𝑑𝑑
𝑏𝑏

𝑐𝑐

𝑎𝑎

Which of the following diagrams are self-complementary graphs?

1

𝑏𝑏

𝑐𝑐

2

𝑑𝑑

𝑏𝑏

𝑎𝑎

3

𝑑𝑑

𝑏𝑏

𝑐𝑐

𝑎𝑎

4

𝑑𝑑
𝑏𝑏

𝑐𝑐

𝑎𝑎

Which diagram has an Euler circuit?

1

𝑒𝑒
𝑏𝑏

𝑐𝑐

𝑎𝑎

2

𝑒𝑒

𝑏𝑏

𝑐𝑐

𝑎𝑎

3

𝑑𝑑

𝑏𝑏

𝑐𝑐

𝑎𝑎

4

𝑒𝑒
𝑐𝑐

𝑑𝑑

𝑏𝑏

Which diagram has an Euler circuit?

1

𝑑𝑑

𝑏𝑏

𝑐𝑐

𝑎𝑎

2

𝑑𝑑𝑏𝑏

𝑐𝑐𝑎𝑎

3

𝑑𝑑

𝑏𝑏

𝑐𝑐

𝑎𝑎

4

𝑑𝑑

𝑏𝑏

𝑐𝑐

𝑎𝑎

Which of the following diagrams are bipartite graphs?

1
𝑓𝑓

𝑏𝑏

𝑑𝑑

𝑎𝑎

2 𝑒𝑒

𝑓𝑓

𝑏𝑏

𝑐𝑐

𝑑𝑑

𝑎𝑎

3

𝑐𝑐

𝑑𝑑

𝑓𝑓

𝑎𝑎

𝑏𝑏

4

𝑒𝑒

𝑓𝑓

𝑏𝑏

𝑐𝑐

𝑑𝑑

𝑎𝑎

Which of the following diagrams are strongly connected graphs?

1

𝑒𝑒
𝑓𝑓

𝑏𝑏

𝑐𝑐

𝑑𝑑

𝑎𝑎

2

𝑑𝑑 𝑒𝑒

𝑓𝑓

𝑏𝑏

𝑐𝑐

3

𝑒𝑒

𝑓𝑓
𝑏𝑏

𝑐𝑐

𝑑𝑑

𝑎𝑎

4

𝑒𝑒

𝑓𝑓

𝑏𝑏

𝑐𝑐

𝑑𝑑
𝑎𝑎

Which diagram has a Hamilton circuit?

1 2

3 4

158

Appendix I

Coding Results from the EDGEWORTH
Reliability Evaluation

This section includes the coding results from the reliability evaluation described in Section 6.1.
Here, the two coders are distinguished by their Coder ID. The Seed refers to the random seed
configured in EDGEWORTH when conducting the study, which is kept the same for consistency
between two coders. Translation problem produced? indicates whether there are at least 1
Correct diagram and 3 Incorrect diagrams within 10 mutants.

Coder ID Problem ID Seed Diagram # Type Translation problem produced?
1 c02p01 test0 0 Correct True
1 c02p01 test0 1 Discard
1 c02p01 test0 2 Incorrect
1 c02p01 test0 3 Incorrect
1 c02p01 test0 4 Incorrect
1 c02p01 test0 5 Discard
1 c02p01 test0 6 Discard
1 c02p01 test0 7 Incorrect
1 c02p01 test0 8 Correct
1 c02p01 test0 9 Incorrect
1 c02p01 test0 10 Incorrect
1 c06p06 test0 0 Correct True
1 c06p06 test0 1 Correct
1 c06p06 test0 2 Correct
1 c06p06 test0 3 Discard
1 c06p06 test0 4 Discard
1 c06p06 test0 5 Discard
1 c06p06 test0 6 Discard
1 c06p06 test0 7 Discard
1 c06p06 test0 8 Discard
1 c06p06 test0 9 Discard

Continued on next page

159

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

1 c06p06 test0 10 Incorrect
1 c07p06 test0 0 Correct True
1 c07p06 test0 1 Discard
1 c07p06 test0 2 Discard
1 c07p06 test0 3 Correct
1 c07p06 test0 4 Discard
1 c07p06 test0 5 Discard
1 c07p06 test0 6 Incorrect
1 c07p06 test0 7 Discard
1 c07p06 test0 8 Discard
1 c07p06 test0 9 Correct
1 c07p06 test0 10 Incorrect
1 c07p22 test0 0 Correct True
1 c07p22 test0 1 Correct
1 c07p22 test0 2 Incorrect
1 c07p22 test0 3 Incorrect
1 c07p22 test0 4 Discard
1 c07p22 test0 5 Incorrect
1 c07p22 test0 6 Discard
1 c07p22 test0 7 Correct
1 c07p22 test0 8 Discard
1 c07p22 test0 9 Discard
1 c07p22 test0 10 Incorrect
1 c08p08 test0 0 Correct True
1 c08p08 test0 1 Correct
1 c08p08 test0 2 Correct
1 c08p08 test0 3 Incorrect
1 c08p08 test0 4 Discard
1 c08p08 test0 5 Discard
1 c08p08 test0 6 Correct
1 c08p08 test0 7 Discard
1 c08p08 test0 8 Incorrect
1 c08p08 test0 9 Incorrect
1 c08p08 test0 10 Incorrect
1 c10p08 test0 0 Correct True
1 c10p08 test0 1 Incorrect
1 c10p08 test0 2 Incorrect
1 c10p08 test0 3 Correct
1 c10p08 test0 4 Incorrect
1 c10p08 test0 5 Incorrect
1 c10p08 test0 6 Incorrect

Continued on next page

160

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

1 c10p08 test0 7 Discard
1 c10p08 test0 8 Discard
1 c10p08 test0 9 Discard
1 c10p08 test0 10 Discard
1 lewis_1 test0 0 Correct True
1 lewis_1 test0 1 Correct
1 lewis_1 test0 2 Discard
1 lewis_1 test0 3 Incorrect
1 lewis_1 test0 4 Incorrect
1 lewis_1 test0 5 Incorrect
1 lewis_1 test0 6 Discard
1 lewis_1 test0 7 Incorrect
1 lewis_1 test0 8 Discard
1 lewis_1 test0 9 Incorrect
1 lewis_1 test0 10 Incorrect
1 lewis_2 test0 0 Correct True
1 lewis_2 test0 1 Incorrect
1 lewis_2 test0 2 Incorrect
1 lewis_2 test0 3 Incorrect
1 lewis_2 test0 4 Incorrect
1 lewis_2 test0 5 Incorrect
1 lewis_2 test0 6 Incorrect
1 lewis_2 test0 7 Incorrect
1 lewis_2 test0 8 Incorrect
1 lewis_2 test0 9 Incorrect
1 lewis_2 test0 10 Incorrect
1 lewis_4 test0 0 Correct True
1 lewis_4 test0 1 Discard
1 lewis_4 test0 2 Incorrect
1 lewis_4 test0 3 Discard
1 lewis_4 test0 4 Discard
1 lewis_4 test0 5 Incorrect
1 lewis_4 test0 6 Incorrect
1 lewis_4 test0 7 Incorrect
1 lewis_4 test0 8 Correct
1 lewis_4 test0 9 Incorrect
1 lewis_4 test0 10 Incorrect
1 graph_0 test0 0 Correct True
1 graph_0 test0 1 Correct
1 graph_0 test0 2 Discard
1 graph_0 test0 3 Correct

Continued on next page

161

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

1 graph_0 test0 4 Correct
1 graph_0 test0 5 Incorrect
1 graph_0 test0 6 Discard
1 graph_0 test0 7 Discard
1 graph_0 test0 8 Correct
1 graph_0 test0 9 Correct
1 graph_0 test0 10 Discard
1 graph_4 test0 0 Correct False
1 graph_4 test0 1 Correct
1 graph_4 test0 2 Discard
1 graph_4 test0 3 Correct
1 graph_4 test0 4 Correct
1 graph_4 test0 5 Discard
1 graph_4 test0 6 Discard
1 graph_4 test0 7 Correct
1 graph_4 test0 8 Correct
1 graph_4 test0 9 Discard
1 graph_4 test0 10 Correct
1 graph_5 test0 0 Correct True
1 graph_5 test0 1 Correct
1 graph_5 test0 2 Discard
1 graph_5 test0 3 Incorrect
1 graph_5 test0 4 Discard
1 graph_5 test0 5 Incorrect
1 graph_5 test0 6 Correct
1 graph_5 test0 7 Correct
1 graph_5 test0 8 Discard
1 graph_5 test0 9 Incorrect
1 graph_5 test0 10 Correct
1 graph_1 test0 0 Correct True
1 graph_1 test0 1 Correct
1 graph_1 test0 2 Incorrect
1 graph_1 test0 3 Correct
1 graph_1 test0 4 Incorrect
1 graph_1 test0 5 Discard
1 graph_1 test0 6 Correct
1 graph_1 test0 7 Incorrect
1 graph_1 test0 8 Discard
1 graph_1 test0 9 Discard
1 graph_1 test0 10 Incorrect
1 graph_3 test0 0 Incorrect True

Continued on next page

162

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

1 graph_3 test0 1 Incorrect
1 graph_3 test0 2 Discard
1 graph_3 test0 3 Correct
1 graph_3 test0 4 Incorrect
1 graph_3 test0 5 Incorrect
1 graph_3 test0 6 Incorrect
1 graph_3 test0 7 Incorrect
1 graph_3 test0 8 Incorrect
1 graph_3 test0 9 Correct
1 graph_3 test0 10 Correct
2 c01p01 test0 0 Correct True
2 c01p01 test0 1 Incorrect
2 c01p01 test0 2 Correct
2 c01p01 test0 3 Correct
2 c01p01 test0 4 Incorrect
2 c01p01 test0 5 Discard
2 c01p01 test0 6 Incorrect
2 c01p01 test0 7 Incorrect
2 c01p01 test0 8 Correct
2 c01p01 test0 9 Incorrect
2 c01p01 test0 10 Incorrect
2 c01p10 test0 0 Correct True
2 c01p10 test0 1 Correct
2 c01p10 test0 2 Incorrect
2 c01p10 test0 3 Incorrect
2 c01p10 test0 4 Discard
2 c01p10 test0 5 Discard
2 c01p10 test0 6 Correct
2 c01p10 test0 7 Incorrect
2 c01p10 test0 8 Discard
2 c01p10 test0 9 Correct
2 c01p10 test0 10 Incorrect
2 c04p01 test0 0 Correct True
2 c04p01 test0 1 Incorrect
2 c04p01 test0 2 Incorrect
2 c04p01 test0 3 Discard
2 c04p01 test0 4 Incorrect
2 c04p01 test0 5 Discard
2 c04p01 test0 6 Correct
2 c04p01 test0 7 Incorrect
2 c04p01 test0 8 Incorrect

Continued on next page

163

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

2 c04p01 test0 9 Incorrect
2 c04p01 test0 10 Discard
2 c04p12 test0 0 Correct True
2 c04p12 test0 1 Incorrect
2 c04p12 test0 2 Correct
2 c04p12 test0 3 Discard
2 c04p12 test0 4 Correct
2 c04p12 test0 5 Correct
2 c04p12 test0 6 Correct
2 c04p12 test0 7 Discard
2 c04p12 test0 8 Correct
2 c04p12 test0 9 Correct
2 c04p12 test0 10 Discard
2 c05p01 test0 0 Correct False
2 c05p01 test0 1 Correct
2 c05p01 test0 2 Discard
2 c05p01 test0 3 Discard
2 c05p01 test0 4 Discard
2 c05p01 test0 5 Correct
2 c05p01 test0 6 Discard
2 c05p01 test0 7 Correct
2 c05p01 test0 8 Discard
2 c05p01 test0 9 Discard
2 c05p01 test0 10 Correct
2 c05p13 test0 0 Correct True
2 c05p13 test0 1 Incorrect
2 c05p13 test0 2 Incorrect
2 c05p13 test0 3 Correct
2 c05p13 test0 4 Discard
2 c05p13 test0 5 Discard
2 c05p13 test0 6 Incorrect
2 c05p13 test0 7 Incorrect
2 c05p13 test0 8 Incorrect
2 c05p13 test0 9 Correct
2 c05p13 test0 10 Incorrect
2 c11p07 test0 0 Correct True
2 c11p07 test0 1 Correct
2 c11p07 test0 2 Discard
2 c11p07 test0 3 Incorrect
2 c11p07 test0 4 Discard
2 c11p07 test0 5 Discard

Continued on next page

164

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

2 c11p07 test0 6 Incorrect
2 c11p07 test0 7 Incorrect
2 c11p07 test0 8 Correct
2 c11p07 test0 9 Discard
2 c11p07 test0 10 Incorrect
2 c11p25 test0 0 Correct True
2 c11p25 test0 1 Correct
2 c11p25 test0 2 Correct
2 c11p25 test0 3 Correct
2 c11p25 test0 4 Discard
2 c11p25 test0 5 Discard
2 c11p25 test0 6 Incorrect
2 c11p25 test0 7 Discard
2 c11p25 test0 8 Incorrect
2 c11p25 test0 9 Discard
2 c11p25 test0 10 Correct
2 c12p20 test0 0 Correct True
2 c12p20 test0 1 Correct
2 c12p20 test0 2 Correct
2 c12p20 test0 3 Discard
2 c12p20 test0 4 Correct
2 c12p20 test0 5 Discard
2 c12p20 test0 6 Incorrect
2 c12p20 test0 7 Incorrect
2 c12p20 test0 8 Incorrect
2 c12p20 test0 9 Correct
2 c12p20 test0 10 Correct
2 lewis_0 test0 0 Correct True
2 lewis_0 test0 1 Incorrect
2 lewis_0 test0 2 Incorrect
2 lewis_0 test0 3 Incorrect
2 lewis_0 test0 4 Incorrect
2 lewis_0 test0 5 Incorrect
2 lewis_0 test0 6 Incorrect
2 lewis_0 test0 7 Incorrect
2 lewis_0 test0 8 Incorrect
2 lewis_0 test0 9 Incorrect
2 lewis_0 test0 10 Incorrect
2 lewis_6 test0 0 Correct True
2 lewis_6 test0 1 Incorrect
2 lewis_6 test0 2 Incorrect

Continued on next page

165

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

2 lewis_6 test0 3 Incorrect
2 lewis_6 test0 4 Incorrect
2 lewis_6 test0 5 Incorrect
2 lewis_6 test0 6 Discard
2 lewis_6 test0 7 Correct
2 lewis_6 test0 8 Discard
2 lewis_6 test0 9 Incorrect
2 lewis_6 test0 10 Incorrect
1 c03p01 test0 0 Correct False
1 c03p01 test0 1 Correct
1 c03p01 test0 2 Discard
1 c03p01 test0 3 Correct
1 c03p01 test0 4 Discard
1 c03p01 test0 5 Correct
1 c03p01 test0 6 Discard
1 c03p01 test0 7 Discard
1 c03p01 test0 8 Discard
1 c03p01 test0 9 Correct
1 c03p01 test0 10 Discard
1 lewis_3 test0 0 Correct True
1 lewis_3 test0 1 Incorrect
1 lewis_3 test0 2 Discard
1 lewis_3 test0 3 Incorrect
1 lewis_3 test0 4 Discard
1 lewis_3 test0 5 Incorrect
1 lewis_3 test0 6 Discard
1 lewis_3 test0 7 Incorrect
1 lewis_3 test0 8 Discard
1 lewis_3 test0 9 Discard
1 lewis_3 test0 10 Incorrect
1 graph_6 test0 0 Correct True
1 graph_6 test0 1 Correct
1 graph_6 test0 2 Incorrect
1 graph_6 test0 3 Correct
1 graph_6 test0 4 Incorrect
1 graph_6 test0 5 Incorrect
1 graph_6 test0 6 Correct
1 graph_6 test0 7 Correct
1 graph_6 test0 8 Incorrect
1 graph_6 test0 9 Correct
1 graph_6 test0 10 Correct

Continued on next page

166

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

1 c07p10 test0 0 Correct False
1 c07p10 test0 1 Correct
1 c07p10 test0 2 Correct
1 c07p10 test0 3 Discard
1 c07p10 test0 4 Discard
1 c07p10 test0 5 Correct
1 c07p10 test0 6 Correct
1 c07p10 test0 7 Correct
1 c07p10 test0 8 Correct
1 c07p10 test0 9 Discard
1 c07p10 test0 10 Correct
1 lewis_5 test0 0 Correct True
1 lewis_5 test0 1 Incorrect
1 lewis_5 test0 2 Incorrect
1 lewis_5 test0 3 Incorrect
1 lewis_5 test0 4 Incorrect
1 lewis_5 test0 5 Incorrect
1 lewis_5 test0 6 Incorrect
1 lewis_5 test0 7 Incorrect
1 lewis_5 test0 8 Incorrect
1 lewis_5 test0 9 Incorrect
1 lewis_5 test0 10 Incorrect
1 graph_2 test0 0 Incorrect True
1 graph_2 test0 1 Incorrect
1 graph_2 test0 2 Correct
1 graph_2 test0 3 Incorrect
1 graph_2 test0 4 Incorrect
1 graph_2 test0 5 Discard
1 graph_2 test0 6 Incorrect
1 graph_2 test0 7 Incorrect
1 graph_2 test0 8 Discard
1 graph_2 test0 9 Incorrect
1 graph_2 test0 10 Incorrect
2 c03p01 test0 0 Correct False
2 c03p01 test0 1 Correct
2 c03p01 test0 2 Discard
2 c03p01 test0 3 Correct
2 c03p01 test0 4 Discard
2 c03p01 test0 5 Correct
2 c03p01 test0 6 Discard
2 c03p01 test0 7 Discard

Continued on next page

167

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

2 c03p01 test0 8 Discard
2 c03p01 test0 9 Correct
2 c03p01 test0 10 Discard
2 lewis_3 test0 0 Correct True
2 lewis_3 test0 1 Incorrect
2 lewis_3 test0 2 Discard
2 lewis_3 test0 3 Incorrect
2 lewis_3 test0 4 Discard
2 lewis_3 test0 5 Incorrect
2 lewis_3 test0 6 Discard
2 lewis_3 test0 7 Incorrect
2 lewis_3 test0 8 Discard
2 lewis_3 test0 9 Discard
2 lewis_3 test0 10 Incorrect
2 graph_6 test0 0 Correct True
2 graph_6 test0 1 Correct
2 graph_6 test0 2 Incorrect
2 graph_6 test0 3 Correct
2 graph_6 test0 4 Incorrect
2 graph_6 test0 5 Incorrect
2 graph_6 test0 6 Correct
2 graph_6 test0 7 Correct
2 graph_6 test0 8 Incorrect
2 graph_6 test0 9 Correct
2 graph_6 test0 10 Correct
2 c07p10 test0 0 Correct False
2 c07p10 test0 1 Correct
2 c07p10 test0 2 Correct
2 c07p10 test0 3 Discard
2 c07p10 test0 4 Discard
2 c07p10 test0 5 Correct
2 c07p10 test0 6 Correct
2 c07p10 test0 7 Correct
2 c07p10 test0 8 Correct
2 c07p10 test0 9 Discard
2 c07p10 test0 10 Correct
2 lewis_5 test0 0 Correct True
2 lewis_5 test0 1 Incorrect
2 lewis_5 test0 2 Incorrect
2 lewis_5 test0 3 Incorrect
2 lewis_5 test0 4 Incorrect

Continued on next page

168

Continued from previous page
Coder ID Problem ID Seed Diagram # Type Translation problem produced?

2 lewis_5 test0 5 Incorrect
2 lewis_5 test0 6 Incorrect
2 lewis_5 test0 7 Incorrect
2 lewis_5 test0 8 Incorrect
2 lewis_5 test0 9 Incorrect
2 lewis_5 test0 10 Incorrect
2 graph_2 test0 0 Incorrect True
2 graph_2 test0 1 Incorrect
2 graph_2 test0 2 Correct
2 graph_2 test0 3 Incorrect
2 graph_2 test0 4 Incorrect
2 graph_2 test0 5 Discard
2 graph_2 test0 6 Incorrect
2 graph_2 test0 7 Incorrect
2 graph_2 test0 8 Discard
2 graph_2 test0 9 Incorrect
2 graph_2 test0 10 Incorrect

169

170

Appendix J

EDGEWORTH User Study Instructions

This section includes 2 out of 4 instruction documents for the EDGEWORTH user study described
in Section 6.2.

171

Edgeworth User Study Instructions
Date: Jul 23, 2024
Participant #: 4
Group: Penrose/Edgeworth ➡ Google Drawings
Domain: Chemistry

Introduction
Thank you for taking the time to participate in our study! This study will involve creating
diagrammatic multiple-choice problems using Google Drawings and Edgeworth, our research
prototype tool. This session will last 90-minutes at most. The figure below is a diagrammatic
multiple-choice problem, where the prompt is textual and the answer choices are diagrams.

Your task is to create diagrammatic multiple-choice problems. Problems consist of one correct
answer and three incorrect answers.

Unset

Unset

Penrose/Edgeworth Tutorial
Penrose is a diagram making tool in which you write plain-text notation and the system
automatically lays out diagrams for you. This section guides you through the process of making
diagrammatic answers to a simple geometry problem: “Which of the following diagrams shows
the correct Lewis structure of O2?”

1. Navigate to the Penrose online editor, which will show an example geometry program:
https://penrose.cs.cmu.edu/try/?examples=molecules/sulfuric-acid

2. Replace the program in the “substance” tab with the following program, which constructs
the two atoms in an oxygen molecule (O2). Hit “compile” to see the diagram.

Oxygen o1, o2

3. Add a Bond object and FourDots predicates the program to get the full lewis structure
of an oxygen molecule:

Oxygen o1, o2
Bond b := DoubleBond(o1, o2)
FourDots(o1)
FourDots(o2)

4. Click “resample” a few times to see alternate layouts
5. Navigate to the Edgeworth interface:

https://penrose.github.io/penrose/edgeworth/chemistry
6. Copy and paste the Substance program from the Penrose UI into “Input Scenario”
7. Click “Generate Variations”
8. Wait until layout optimization finishes

9. click on one of the diagrams to see alternate layouts.
10. Click checkboxes to collect diagrams. After each checkbox click, toggle to select whether

the diagram is correct. The exact choices don’t matter here.
11. Click the “More Variations” icon to generate another batch of diagrams
12. Select a few more diagrams

Google Drawings Tutorial
1. Open a new Google Drawings file: https://docs.google.com/drawings/
2. Add text labels using “Text box”

3. Create the oxygen molecules as text labels

4. Select the “Line” tool

5. Draw lines between the molecules

6. Select the shape tool

7. Pick the “Oval” shape

8. Hold down the Shift key and drag on the canvas to create a circle

9. Change the fill color to black

10. Copy and paste four more circles

11. Arrange them to form a lone pair around one of the oxygen molecules

12. Repeat the steps above to create 3 more pairs

Tasks
In this section, you will now create diagrammatic multiple-choice problems with both Google
Drawings and Penrose/Edgeworth. You will be given two textual prompts and a sample correct
diagram. You will make two problems from them by creating corresponding diagrammatic
answers.

Task 1: Penrose/Edgeworth

Prompt 1: Which of the following diagrams shows the correct Lewis
structure for CH2O?

For this prompt, you will:
● Edit the example program provided below using Penrose to create 1 correct diagram in

the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by copying the correct
diagram from Penrose to Edgeworth and using Edgeworth to generate the incorrect
diagrams. These incorrect diagrams should be distinct from each other and relevant to
the prompt.

○ Edgeworth Link: https://penrose.github.io/penrose/edgeworth/chemistry
● Make sure all of your diagrams are legible and clear.

Example program
https://penrose.cs.cmu.edu/try/?examples=molecules/sulfuric-acid

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=4&entry.633592456=1&entry.189103428
6=Edgeworth&entry.315819=Chemistry

Task 2: Google Drawings

Prompt 1: Which of the following diagrams shows the correct Lewis
structure for CH2O?

For this prompt, you will edit the example Google Drawings diagram provided below in Google
Drawings to:

● Create 1 correct diagram in the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by editing the correct diagram.
These incorrect diagrams should be distinct from each other and relevant to the prompt.

● Make sure all of your diagrams are legible and clear.

Example drawing
Edgeworth chemistry task example: h2so4

Survey

https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=4&entry.633592456=1&entry.189103428
6=Google+Drawings&entry.315819=Chemistry

Task 3: Penrose/Edgeworth

Prompt 2: Which of the following diagrams shows the correct Lewis
structure for HNO3?

For this prompt, you will:
● Edit the example program provided below using Penrose to create 1 correct diagram in

the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by copying the correct
diagram from Penrose to Edgeworth and using Edgeworth to generate the incorrect
diagrams. These incorrect diagrams should be distinct from each other and relevant to
the prompt.

○ Edgeworth Link: https://penrose.github.io/penrose/edgeworth/chemistry
● Make sure all of your diagrams are legible and clear.

Example program
https://penrose.cs.cmu.edu/try/?examples=molecules/sulfuric-acid

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=4&entry.633592456=2&entry.189103428
6=Edgeworth&entry.315819=Chemistry

Task 4: Google Drawings

Prompt 2: Which of the following diagrams shows the correct Lewis
structure for HNO3?

For this prompt, you will edit the example Google Drawings diagram provided below in Google
Drawings to:

● Create 1 correct diagram in the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by editing the correct diagram.
These incorrect diagrams should be distinct from each other and relevant to the prompt.

● Make sure all of your diagrams are legible and clear.

Example drawing
Edgeworth chemistry task example: h2so4

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=4&entry.633592456=2&entry.189103428
6=Google+Drawings&entry.315819=Chemistry

Edgeworth User Study Instructions
Date: Jul 23, 2024
Participant #: 3
Group: Penrose/Edgeworth ➡ Google Drawings
Domain: Geometry

Introduction
Thank you for taking the time to participate in our study! This study will involve creating
diagrammatic multiple-choice problems using Google Drawings and Edgeworth, our research
prototype tool. This session will last 90-minutes at most. The figure below is a diagrammatic
multiple-choice problem, where the prompt is textual and the answer choices are diagrams.

Your task is to create diagrammatic multiple-choice problems. Problems consist of one correct
answer and three incorrect answers.

Unset

Unset

Penrose/Edgeworth Tutorial
Penrose is a diagram making tool in which you write plain-text notation and the system
automatically lays out diagrams for you. This section guides you through the process of making
diagrammatic answers to a simple geometry problem: “In which of the following diagrams the
triangle ABC is a right triangle?”

1. Navigate to the Penrose online editor, which will show an example geometry program:
https://penrose.cs.cmu.edu/try/?examples=geometry-domain/complementary-angles

2. Replace the program in the “substance” tab with the following program, which constructs
a triangle:

Point A, B, C
Segment AB := Segment(A, B)
Segment BC := Segment(B, C)
Segment CA := Segment(C, A)
AutoLabel A, B, C

3. Add an InteriorAngle object and RightMarked predicate the program to get a right
triangle:

Point A, B, C
Segment AB := Segment(A, B)
Segment BC := Segment(B, C)
Segment CA := Segment(C, A)
Angle aABC := InteriorAngle(A, B, C)
RightMarked(aABC)
AutoLabel A, B, C

4. Click “resample” a few times to see alternate layouts
5. Navigate to the Edgeworth interface:

https://penrose.github.io/penrose/edgeworth/geometry/
6. Copy and paste the Substance program from the Penrose UI into “Input Scenario”
7. Click “Generate Variations”
8. Wait until layout optimization finishes.

9. click on one of the diagrams to see alternate layouts.
10. Click checkboxes to collect diagrams. After each checkbox click, toggle to select whether

the diagram is correct. The exact choices don’t matter here.
11. Click the “More Variations” icon to generate another batch of diagrams
12. Select a few more diagrams

Google Drawings Tutorial
1. Open a new Google Drawings file: https://docs.google.com/drawings/
2. Select the shape tool

3. Pick the “Oval” shape

4. Hold down the Shift key and drag on the canvas to create a circle

5. Change the fill color to black

6. Copy and paste two more circles

7. Arrange them to form a right triangle

8. Select the “Line” tool

9. Draw lines between the circles

10. Add text labels using “Text box”

11. Move labels near the points

12. Use the “Line” tool again to draw the right angle mark

Tasks
In this section, you will now create diagrammatic multiple-choice problems with both Google
Drawings and Penrose/Edgeworth. You will be given two textual prompts and a sample correct
diagram. You will make problems from them by creating corresponding diagrammatic answers.

Task 1: Penrose/Edgeworth

Prompt 1: In which of the following diagrams are segments AB and CD
parallel?

For this prompt, you will:
● Edit the example program provided below using Penrose to create 1 correct diagram in

the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by copying the correct
diagram from Penrose to Edgeworth and using Edgeworth to generate the incorrect
diagrams. These incorrect diagrams should be distinct from each other and relevant to
the prompt.

○ Edgeworth Link: https://penrose.github.io/penrose/edgeworth/geometry/
● Make sure all of your diagrams are legible and clear.

Example program
https://penrose.cs.cmu.edu/try/?examples=geometry-domain/complementary-angles

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=3&entry.633592456=1&entry.189103428
6=Edgeworth&entry.315819=Geometry

Task 2: Google Drawings

Prompt 1: In which of the following diagrams are segments AB and CD
parallel?

For this prompt, you will edit the example Google Drawings diagram provided below in Google
Drawings to:

● Create 1 correct diagram in the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by editing the correct diagram.
These incorrect diagrams should be distinct from each other and relevant to the prompt.

● Make sure all of your diagrams are legible and clear.

Example drawing
Edgeworth geometry task example: complementary-angles

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=3&entry.633592456=1&entry.189103428
6=Google+Drawings&entry.315819=Geometry

Task 3: Penrose/Edgeworth

Prompt 2: in which of the following diagrams is there a perpendicular
bisector for segment BC?

For this prompt, you will:
● Edit the example program provided below using Penrose to create 1 correct diagram in

the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by copying the correct
diagram from Penrose to Edgeworth and using Edgeworth to generate the incorrect
diagrams. These incorrect diagrams should be distinct from each other and relevant to
the prompt.

○ Edgeworth Link: https://penrose.github.io/penrose/edgeworth/geometry/
● Make sure all of your diagrams are legible and clear.

Example program
https://penrose.cs.cmu.edu/try/?examples=geometry-domain/complementary-angles

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=3&entry.633592456=2&entry.189103428
6=Edgeworth&entry.315819=Geometry

Task 4: Google Drawings

Prompt 2: in which of the following diagrams is there a perpendicular
bisector for segment BC?

For this prompt, you will edit the example Google Drawings diagram provided below in Google
Drawings to:

● Create 1 correct diagram in the first 10 minutes.
○ If you fail to create the diagram, we will provide you with a correct diagram.

● In the next 10 minutes, create up to 10 incorrect diagrams by editing the correct diagram.
These incorrect diagrams should be distinct from each other and relevant to the prompt.

● Make sure all of your diagrams are legible and clear.

Example drawing
Edgeworth geometry task example: complementary-angles

Survey
https://docs.google.com/forms/d/e/1FAIpQLScTSfb75ZkdFBP6dGnEgSVZRMkGW1pF-nsSLK6
aLbDnR0at4g/viewform?usp=pp_url&entry.276402372=3&entry.633592456=2&entry.189103428
6=Google+Drawings&entry.315819=Geometry

190

Appendix K

EDGEWORTH Expert Walkthrough
Demonstration Protocol

Demographics
• Is it okay for me to record this session? The recording will only be shared within the team

for research purposes.
• What do you do professionally?
• How many years have you been doing this?

Demo (2 mins)

Setup
You are creating sets of translation problems, i.e. problems asking students to determine diagram-
matic instances and noninstances of a textual description, using Edgeworth.

Share screen and perform this demonstration:
• Select a problem (from another domain) from the dropdown.
• Click “Generate Variations”.
• Click checkboxes to collect diagrams.
• Click “Show Problem” to see the problem.
• Click “Hide Problem” to go back.
• Drag “Number of Variations” to increase the number of diagrams on the grid.

Definitions
• Identical to original: the diagram is identical (modulo layout differences) to the original.
• Correct: the diagram is a correct answer to the prompt.

191

• Incorrect: the diagram is not a correct answer to the prompt.
• Blatantly incorrect: the diagram shows a blatantly incorrect answer to the prompt. Students

who have a cursory understanding of the relevant geometry concept can identify the diagram
as an incorrect one.

Individual diagram ratings / problem generation
For a sample of 5-10 prompts, rate each generated diagram as one of: identical to original, correct,
incorrect, and blatantly incorrect. You’ll eventually use these diagrams to create a problem.

After rating the diagrams, optionally answer the following questions on some of the
ratings:

• Why did you rate the diagram as “<option>”?
• What needs to be changed to turn it into “<another-option>”?
• How does the rating relate to your instructional goals?

Problem creation
Now, create the best problem you can make from the pool of diagrams:

• Choose 4 answers; no limitations on the number of correct or incorrect answers.
• If needed, you can generate more than 10 diagrams using the slider on the left.

Problem quality
For each of the problems authored, answer the following questions:

• Ecological validity: Would you use this problem in your course?

In what context would you include it (e.g., in class, quizzes, problem sets, exams)?

What did you like about the problem?

How can it be improved?

− NOTE: try to uncover if the issue is with the diagram appearance versus content.

How similar is this problem to problems you’ve seen in the past?
• Authoring effort: If you were going to create this problem, how would you do it?

How much work do you expect the authoring to take?

− In terms of time?

− In terms of effort?

How often do you author problems like this?

192

Bibliography

[1] S. Ainsworth, V. Prain, and R. Tytler. “Drawing to learn in science”. Science 333.6046
(2011), pp. 1096–1097 (cit. on pp. 6, 22).

[2] V. Aleven, B. M. McLaren, J. Sewall, and K. R. Koedinger. “The cognitive tutor authoring
tools (CTAT): Preliminary evaluation of efficiency gains”. International Conference on
Intelligent Tutoring Systems. Vol. 4053 LNCS. Jhongli, Taiwan: Springer, 2006, pp. 61–70
(cit. on pp. 9, 101).

[3] V. Aleven, J. Sewall, B. M. McLaren, and K. R. Koedinger. “Rapid authoring of Intelligent
Tutors for real-world and experimental use”. Proceedings - Sixth International Conference
on Advanced Learning Technologies, ICALT 2006 2006 (2006), pp. 847–851 (cit. on p. 9).

[4] J. E. Allen, C. I. Guinn, and E. Horvtz. “Mixed-initiative interaction”. IEEE Intelligent
Systems and their Applications 14.5 (1999), pp. 14–23 (cit. on p. 102).

[5] E. Andersen, S. Gulwani, and Z. Popovic. “A trace-based framework for analyzing and
synthesizing educational progressions”. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’13. New York, NY, USA: Association for Computing
Machinery, Apr. 2013, pp. 773–782 (cit. on p. 9).

[6] R. Arnheim. Visual Thinking. en. University of California Press, 1969 (cit. on pp. 5, 7).
[7] J. Avigad. “The Design of Mathematical Language”. en. Handbook of the History and

Philosophy of Mathematical Practice. Cham: Springer International Publishing, 2020,
pp. 1–39 (cit. on p. 61).

[8] T. Barik. “Error Messages as Rational Reconstructions”. English. Ph.D. United States –
North Carolina: North Carolina State University (cit. on p. 110).

[9] J. Barnes and P. Hut. “A hierarchical O (N log N) force-calculation algorithm”. nature
324.6096 (1986), pp. 446–449 (cit. on pp. 58, 67).

[10] D. Barrett, F. Hill, A. Santoro, A. Morcos, and T. Lillicrap. “Measuring abstract reasoning
in neural networks”. Proceedings of the 35th International Conference on Machine
Learning. Vol. 80. PMLR, 2018, pp. 511–520 (cit. on p. 10).

[11] J. Barwise. “Heterogeneous reasoning”. en. Conceptual Graphs for Knowledge Represen-
tation. Berlin, Heidelberg: Springer, 1993, pp. 64–74 (cit. on p. 6).

[12] J. Barwise and J. Etchemendy. “Visual information and valid reasoning”. Philosophy And
The Computer. 2019, pp. 160–182 (cit. on p. 6).

[13] B. Beeton and R. Palais. “Comm. of math. with TEX”. Visible Language 50.2 (2016)
(cit. on pp. 28, 32).

193

[14] J. Belouadi, A. Lauscher, and S. Eger. AutomaTikZ: Text-Guided Synthesis of Scientific
Vector Graphics with TikZ. 2024 (cit. on p. 109).

[15] J. Bender and M. Marrinan. The Culture of Diagram. Stanford: Stanford University Press,
2010 (cit. on p. 5).

[16] H. R. Bernard and H. R. Bernard. Social research methods: Qualitative and quantitative
approaches. Sage, 2013 (cit. on p. 13).

[17] T. Berners-Lee and D. Connolly. Hypertext markup language-2.0. 1995 (cit. on p. 31).
[18] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art:

the calculus of inductive constructions. Springer Science & Business Media, 2013 (cit. on
p. 32).

[19] E. D. Bloch. A first course in geometric topology and differential geometry. Springer
Science & Business Media, 1997 (cit. on p. 52).

[20] A. Blum and T. Mitchell. “Combining labeled and unlabeled data with co-training”.
Proceedings of the Annual ACM Conference on Computational Learning Theory (1998),
pp. 92–100 (cit. on p. 3).

[21] E. Bobek and B. Tversky. “Creating visual explanations improves learning”. Cognitive
Research: Principles and Implications 1.1 (Dec. 2016), pp. 1–14 (cit. on p. 6).

[22] A. Borning. “The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory”. ACM Trans. Program. Lang. Syst. 3.4 (Oct. 1981), pp. 353–387
(cit. on p. 8).

[23] M. Bostock, V. Ogievetsky, and J. Heer. “D3 data-driven documents”. IEEE Transactions
on Visualization and Computer Graphics 17.12 (2011), pp. 2301–2309 (cit. on p. 6).

[24] J. C. Bowman and A. Hammerlindl. “Asymptote: A vector graphics language”. TUGboat:
The Comm. of the TEX Users Group 29.2 (2008), pp. 288–294 (cit. on p. 8).

[25] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004 (cit. on p. 42).

[26] V. Braun and V. Clarke. “Using thematic analysis in psychology”. Qualitative research in
psychology 3.2 (2006), pp. 77–101 (cit. on p. 14).

[27] Bret Victor. Drawing dynamic visualizations. 2013 (cit. on p. 8).
[28] E. B. Burger, D. J. Chard, E. J. Hall, P. A. Kennedy, S. J. Leinwand, F. L. Renfro, D. G.

Seymour, and B. K. Wattis. Holt geometry. Holt, Rinehart and Winston, 2007 (cit. on
p. 79).

[29] B. Buxton. Sketching user experiences: getting the design right and the right design.
Morgan kaufmann, 2010 (cit. on p. 21).

[30] O. Byrne. The first six books of the Elements of Euclid: in which coloured diagrams and
symbols are used instead of letters for the greater ease of learners. 1847 (cit. on p. 49).

[31] S. K. Card. Readings in information visualization: using vision to think. eng. The Morgan
Kaufmann series in interactive technologies. San Francisco, Calif: Morgan Kaufmann
Publishers, 1999 (cit. on p. 5).

[32] P. A. Carpenter, M. A. Just, and P. Shell. “What one intelligence test measures: A theo-
retical account of the processing in the Raven progressive matrices test”. Psychological
Review 97.3 (1990), pp. 404–431 (cit. on p. 10).

194

[33] N. Carter and R. Ellis. Group explorer version 3.0. manual. Waltham, MA, 2019 (cit. on
p. 31).

[34] D. Cervone. “MathJax: a platform for mathematics on the Web”. Notices of the AMS 59.2
(2012), pp. 312–316 (cit. on p. 43).

[35] M. T. Chi and R. Wylie. “The ICAP Framework: Linking Cognitive Engagement to Active
Learning Outcomes”. Educational Psychologist 49.4 (Oct. 2014), pp. 219–243 (cit. on
p. 7).

[36] P. P. Chik and M. L. Lo. “Simultaneity and the enacted object of learning”. Classroom
Discourse and the Space of Learning. Vol. 9781410609. Routledge, Apr. 2004, pp. 89–112
(cit. on p. 7).

[37] R. Chugh. “Prodirect manipulation: bidirectional programming for the masses”. Proceed-
ings of the 38th international conference on software engineering companion. ACM, 2016,
pp. 781–784 (cit. on p. 23).

[38] C. Clark and R. Bohrer. “Homotopy Type Theory for Sewn Quilts”. Proceedings of the
11th ACM SIGPLAN International Workshop on Functional Art, Music, Modelling, and
Design. FARM 2023. New York, NY, USA: Association for Computing Machinery, Aug.
2023, pp. 32–43 (cit. on p. 106).

[39] J. Cohen. “A coefficient of agreement for nominal scales”. Educational and psychological
measurement 20.1 (1960), pp. 37–46 (cit. on p. 88).

[40] D. Cole. “The chinese room argument”. The stanford encyclopedia of philosophy. Meta-
physics Research Lab, Stanford University, 2014 (cit. on p. 29).

[41] W. Commons. Illustration to euclid’s proof of the pythagorean theorem. 2006 (cit. on
p. 49).

[42] R. Coulon, G. Dorfsman-Hopkins, E. Harriss, M. Skrodzki, K. E. Stange, and G. Whitney.
“On the importance of illustration for mathematical research”. Notices of the American
Mathematical Society 71.01 (Jan. 2024), p. 1 (cit. on p. 2).

[43] K. Crane, F. de Goes, M. Desbrun, and P. Schröder. “Digital geometry processing with
discrete exterior calculus”. ACM SIGGRAPH 2013 courses. ACM, 2013 (cit. on p. 49).

[44] L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan, and G. Kestin. “Measuring actual
learning versus feeling of learning in response to being actively engaged in the classroom”.
Proceedings of the National Academy of Sciences of the United States of America 116.39
(Sept. 2019), pp. 19251–19257 (cit. on p. 7).

[45] A. A. diSessa and B. L. Sherin. “Meta-representation: an introduction”. The Journal of
Mathematical Behavior 19.4 (Oct. 2000), pp. 385–398 (cit. on p. 71).

[46] PENROSE Documentation (cit. on p. 59).
[47] Elijah Meeks. Third wave data visualization. 2018 (cit. on p. 8).
[48] K. Ellis, D. Ritchie, A. Solar-Lezama, and J. Tenenbaum. “Learning to infer graphics

programs from hand-drawn images”. Advances in neural information processing systems
31. Curran Associates, Inc., 2018, pp. 6059–6068 (cit. on p. 22).

[49] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. “Graphviz and
dynagraph – static and dynamic graph drawing tools”. Graph drawing software. Springer,
2004, pp. 127–148 (cit. on pp. 8, 24, 31, 34).

195

[50] S. E. Embretson. “A Cognitive Design System Approach to Generating Valid Tests:
Application to Abstract Reasoning”. Psychological Methods 3.3 (1998), pp. 380–396
(cit. on p. 10).

[51] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook, A. Gerrit-
sen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J. Molina, M. Palatnik, R. Pohjonen,
E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser, K. van der Vlist, G. H.
Wachsmuth, and J. van der Woning. “The State of the Art in Language Workbenches”.
en. Software Language Engineering. Vol. 8225. Cham: Springer International Publishing,
2013, pp. 197–217 (cit. on p. 24).

[52] K. A. Ericsson. “The Influence of Experience and Deliberate Practice on the Development
of Superior Expert Performance.” The Cambridge handbook of expertise and expert
performance. New York, NY, US: Cambridge University Press, 2006, pp. 683–703 (cit. on
p. 7).

[53] S. M. Ervin. “Designing with diagrams: a role for computing in design education and
exploration”. The Electronic Design Studio, The MIT Press, Cambridge, Massachusetts
(1990), pp. 107–122 (cit. on p. 6).

[54] S. M. Ervin. “Designing with diagrams: a role for computing in design education and
exploration”. The Electronic Design Studio, The MIT Press, Cambridge, Massachusetts.
Cambridge, Massachusetts: The MIT Press, 1990, pp. 107–122 (cit. on pp. 6, 24).

[55] Facebook. React: A JavaScript library for building user interfaces. 2020 (cit. on p. 43).
[56] J. R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus. “Fine-grained

and accurate source code differencing”. ASE 2014 - Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. Association for Computing
Machinery, Inc, 2014, pp. 313–323 (cit. on p. 77).

[57] B. Fatemi, J. Halcrow, and B. Perozzi. Talk like a Graph: Encoding Graphs for Large
Language Models. Oct. 2023 (cit. on p. 109).

[58] J. C. Flanagan. “The critical incident technique.” Psychological bulletin 51.4 (1954),
p. 327 (cit. on p. 13).

[59] M. Ganesalingam. “The language of mathematics”. 2013 (cit. on p. 32).
[60] M. J. Gierl and T. M. Haladyna. Automatic item generation: Theory and practice. Rout-

ledge, 2012 (cit. on p. 9).
[61] M. J. Gierl and H. Lai. “The Role of Item Models in Automatic Item Generation”.

International Journal of Testing 12.3 (July 2012), pp. 273–298 (cit. on p. 9).
[62] M. Gleicher and A. Witkin. “Drawing with constraints”. The Visual Computer 1994 11:1

11.1 (Jan. 1994), pp. 39–51 (cit. on p. 25).
[63] V. Goel. Sketches of thought. MIt Press, 1995 (cit. on p. 21).
[64] T. R. G. Green and M. Petre. “Usability Analysis of Visual Programming Environments:

A‘Cognitive Dimensions’Framework”. Journal of Visual Languages & Computing 7.2
(June 1996), pp. 131–174 (cit. on pp. 12, 24).

[65] M. D. Gross. “The electronic cocktail napkin – a computational environment for working
with design diagrams”. Design studies 17.1 (1996), pp. 53–69 (cit. on p. 23).

196

[66] S. Gulwani. “Example-based Learning in Computer-aided STEM Education”. Commun.
ACM 57.8 (Aug. 2014), pp. 70–80 (cit. on p. 9).

[67] S. Gulwani, W. R. Harris, and R. Singh. “Spreadsheet data manipulation using examples”.
Communications of the ACM 55.8 (2012), pp. 97–105 (cit. on p. 23).

[68] S. Gulwani, V. A. Korthikanti, and A. Tiwari. “Synthesizing geometry constructions”.
ACM SIGPLAN Notices 46.6 (June 2011), pp. 50–61 (cit. on p. 9).

[69] S. Gulwani, O. Polozov, and R. Singh. “Program Synthesis”. English. Foundations and
Trendső in Programming Languages 4.1-2 (July 2017), pp. 1–119 (cit. on p. 22).

[70] J. Hadamard. The Mathematician’s Mind: The Psychology of Invention in the Mathemati-
cal Field. en. Princeton University Press, 1945 (cit. on p. 1).

[71] D. F. Halpern, A. Graesser, and M. Hakel. “Learning principles to guide pedagogy and the
design of learning environments”. Association for Psychological Science (2007) (cit. on
p. 7).

[72] P. Hanrahan. “Systems of thought”. EuroVis 2009 keynote address (2009), pp. 10–12
(cit. on p. 11).

[73] R. L. Harris. “Information graphics: A comprehensive illustrated reference”. Oxford
University Press, 2000, p. 100 (cit. on p. 5).

[74] M. Hegarty and M. Kozhevnikov. “Types of visual – spatial representations and mathe-
matical problem solving”. Journal of Educational Psychology 91.4 (1999), pp. 684–689
(cit. on p. 6).

[75] B. Hempel and R. Chugh. “Semi-automated SVG programming via direct manipulation”.
Proceedings of the 29th annual symposium on user interface software and technology.
Uist ’16. New York, NY, USA: ACM, 2016, pp. 379–390 (cit. on pp. 22, 107).

[76] Y. Hiroshi and T. Tanabe. “A Primal-Dual Exterior Point Method for Nonlinear Opti-
mization”. http://dx.doi.org/10.1137/060676970 20.6 (Nov. 2010), pp. 3335–3363 (cit. on
p. 42).

[77] H. Holling, J. P. Bertling, and N. Zeuch. “Automatic item generation of probability word
problems”. Studies in Educational Evaluation 35.2 (2009), pp. 71–76 (cit. on p. 9).

[78] Holt Geometry Pennsylvania (cit. on p. 79).
[79] L. F. Hornke and M. W. Habon. “Rule-Based Item Bank Construction and Evaluation

Within the Linear Logistic Framework”. Applied Psychological Measurement 10.4 (Dec.
1986), pp. 369–380 (cit. on p. 10).

[80] T. Hottelier, R. Bodik, and K. Ryokai. “Programming by manipulation for layout”. Pro-
ceedings of the 27th annual ACM symposium on user interface software and technology.
Uist ’14. New York, NY, USA: ACM, 2014, pp. 231–241 (cit. on pp. 23, 25).

[81] C. D. Hundhausen and J. L. Brown. “What you see is what you code: a“live”algo-
rithm development and visualization environment for novice learners”. Journal of Visual
Languages & Computing 18.1 (2007), pp. 22–47 (cit. on p. 24).

[82] N. Hurst, W. Li, and K. Marriott. “Review of automatic document formatting”. Proceed-
ings of the 9th ACM symposium on document engineering. ACM, 2009, pp. 99–108 (cit. on
p. 25).

197

[83] E. L. Hutchins, J. D. Hollan, and D. A. Norman. “Direct manipulation interfaces”. Human-
computer interaction 1.4 (1985), pp. 311–338 (cit. on pp. 23, 24).

[84] PENROSE Online IDE (cit. on p. 59).
[85] J. Jacobs, J. Brandt, R. Mech, and M. Resnick. “Extending manual drawing practices with

artist-centric programming tools”. Proceedings of the 2018 CHI conference on human
factors in computing systems. ACM, 2018, p. 590 (cit. on p. 23).

[86] R. Jain, W. Ni, and J. Sunshine. “Generating domain-specific programs for diagram au-
thoring with large language models”. Companion proceedings of the 2023 ACM SIGPLAN
international conference on systems, programming, languages, and applications: Software
for humanity. SPLASH’23. New York, NY, USA: Association for Computing Machinery,
2023, pp. 70–71 (cit. on p. 108).

[87] P. Janii. “GCLC-a tool for constructive euclidean geometry and more than that”. Int. Con.
on math. Soft. Springer, 2006, pp. 58–73 (cit. on p. 49).

[88] A. Kay. Doing with images makes symbols. 1987 (cit. on p. 1).
[89] R. H. Kazi, T. Grossman, H. Cheong, A. Hashemi, and G. W. Fitzmaurice. “DreamSketch:

Early stage 3D design explorations with sketching and generative design.” UIST. 2017,
pp. 401–414 (cit. on p. 22).

[90] P. J. Kellman and C. M. Massey. “Perceptual Learning, Cognition, and Expertise”. Psychol-
ogy of Learning and Motivation - Advances in Research and Theory. Vol. 58. Academic
Press, Jan. 2013, pp. 117–165 (cit. on p. 72).

[91] P. J. Kellman, C. M. Massey, and J. Y. Son. “Perceptual learning modules in mathematics:
Enhancing students’ pattern recognition, structure extraction, and fluency”. Topics in
Cognitive Science 2.2 (Apr. 2010), pp. 285–305 (cit. on pp. 1, 7, 71).

[92] M. B. Kery, A. Horvath, and B. Myers. “Variolite: Supporting exploratory programming by
data scientists”. Proceedings of the 2017 CHI conference on human factors in computing
systems. Chi ’17. New York, NY, USA: ACM, 2017, pp. 1265–1276 (cit. on p. 22).

[93] M. B. Kery and B. A. Myers. “Exploring exploratory programming”. 2017 IEEE sympo-
sium on visual languages and human-centric computing (VL/HCC). IEEE, 2017, pp. 25–
29 (cit. on p. 22).

[94] E. Kmett. ad: automatic differentiation. 2015 (cit. on p. 44).
[95] K. R. Koedinger. “Emergent properties and structural constraints: Advantages of dia-

grammatic representations for reasoning and learning”. Proc. AAAI Spring Symposium on
Reasoning with Diagrammatic Representations. 1992, pp. 154–169 (cit. on pp. vii, 6).

[96] K. R. Koedinger and J. R. Anderson. “Abstract planning and perceptual chunks: Elements
of expertise in geometry”. Cognitive Science 14.4 (Oct. 1990), pp. 511–550 (cit. on pp. 1,
71).

[97] K. R. Koedinger, J. Kim, J. Z. Jia, E. A. McLaughlin, and N. L. Bier. “Learning is Not a
Spectator Sport: Doing is Better than Watching for Learning from a MOOC”. Proceedings
of the Second (2015) ACM Conference on Learning @ Scale. L@S ’15. New York, NY,
USA: Association for Computing Machinery, Mar. 2015, pp. 111–120 (cit. on p. 109).

198

[98] T. Kosar, M. Mernik, and J. C. Carver. “Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments”. Empirical
software engineering 17.3 (2012), pp. 276–304 (cit. on p. 31).

[99] D. R. Krathwohl and L. W. Anderson. A taxonomy for learning, teaching, and assessing:
A revision of Bloom’s taxonomy of educational objectives. Longman, 2009 (cit. on pp. 11,
109).

[100] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari. “A Systematic Review of Auto-
matic Question Generation for Educational Purposes”. International Journal of Artificial
Intelligence in Education 30.1 (Mar. 2020), pp. 121–204 (cit. on p. 9).

[101] D. Kurlander and S. Feiner. “Inferring constraints from multiple snapshots”. ACM Trans.
Graph. 12.4 (Oct. 1993), pp. 277–304 (cit. on p. 25).

[102] J. A. Landay and B. A. Myers. Interactive sketching for the early stages of user inter-
face design. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, 1994 (cit. on p. 22).

[103] J. H. Larkin and H. A. Simon. “Why a Diagram is (Sometimes) Worth Ten Thousand
Words”. Cognitive Science 11.1 (Jan. 1987), pp. 65–100 (cit. on pp. 1, 6, 7, 15, 17).

[104] D. Ledo, S. Houben, J. Vermeulen, N. Marquardt, L. Oehlberg, and S. Greenberg. “Evalu-
ation strategies for HCI Toolkit research”. Conference on Human Factors in Computing
Systems - Proceedings 2018-April (Apr. 2018) (cit. on p. 96).

[105] C. Letondal, S. Chatty, W. G. Phillips, F. André, and S. Conversy. “Usability requirements
for interaction-oriented development tools”. Psychology of Programming (2010), pp. 12–
26 (cit. on p. 109).

[106] A. S. Lewis and M. L. Overton. “Nonsmooth optimization via BFGS”. SIAM J. Optimiz
(2009), pp. 1–35 (cit. on p. 42).

[107] Y. Li, S. Kamil, K. Crane, A. Jacobson, and Y. Gingold. “IMESH: A DSL for Mesh
Processing”. ACM Trans. Graph. 43.5 (June 2024), 154:1–154:17 (cit. on p. 106).

[108] Y. Li, S. Kamil, A. Jacobson, and Y. Gingold. “ILA: compilable markdown for linear
algebra”. ACM Trans. Graph. 40.6 (Dec. 2021), 264:1–264:14 (cit. on p. 106).

[109] H. W. Lie, B. Bos, C. Lilley, and I. Jacobs. Cascading style sheets. Pearson India, 2005
(cit. on p. 31).

[110] H. Limerick, D. Coyle, and J. W. Moore. “The experience of agency in human-computer
interactions: a review”. English. Frontiers in Human Neuroscience 8 (2014) (cit. on p. 23).

[111] Z. Liu and J. Heer. “The effects of interactive latency on exploratory visual analysis”.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2014) (cit. on p. 58).

[112] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K.-W. Chang, M. Galley,
and J. Gao. MathVista: Evaluating Mathematical Reasoning of Foundation Models in
Visual Contexts. Jan. 2024 (cit. on p. 109).

[113] D. Ma’ayan, W. Ni, K. Ye, C. Kulkarni, and J. Sunshine. “How Domain Experts Create
Conceptual Diagrams and Implications for Tool Design”. Conference on Human Factors
in Computing Systems - Proceedings 20 (Apr. 2020) (cit. on pp. 11, 14, 73).

[114] F. Marton. “Sameness and Difference in Transfer”. Journal of the Learning Sciences 15.4
(2006), pp. 499–535 (cit. on pp. 7, 72).

199

[115] A. Masry, D. X. Long, J. Q. Tan, S. Joty, and E. Hoque. ChartQA: A Benchmark for
Question Answering about Charts with Visual and Logical Reasoning. Mar. 2022 (cit. on
p. 109).

[116] R. E. Mayer. “The promise of multimedia learning: using the same instructional design
methods across different media”. Learning and instruction 13.2 (2003), pp. 125–139
(cit. on p. 11).

[117] R. E. Mayer. “Multimedia learning”. Psychology of Learning and Motivation. Vol. 41.
Academic Press, Jan. 2002, pp. 85–139 (cit. on pp. 1, 3, 6).

[118] S. McDirmid. “Living it up with a live programming language”. Proceedings of the
22nd annual ACM SIGPLAN conference on object-oriented programming systems and
applications. Oopsla ’07. New York, NY, USA: ACM, 2007, pp. 623–638 (cit. on p. 24).

[119] S. McDirmid and W. C. Hsieh. “SuperGlue: Component Programming with Object-
Oriented Signals”. en. ECOOP 2006� Object-Oriented Programming. Berlin, Heidel-
berg: Springer, 2006, pp. 206–229 (cit. on p. 24).

[120] M. McKeon. “Harnessing the Information Ecosystem with Wiki-based Visualization
Dashboards”. IEEE Transactions on Visualization and Computer Graphics 15.6 (Nov.
2009), pp. 1081–1088 (cit. on p. 23).

[121] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The definition of standard ML. 1997
(cit. on p. 32).

[122] J. Minarík, S. Estep, W. Ni, and K. Crane. “Minkowski penalties: Robust differentiable
constraint enforcement for vector graphics”. ACM SIGGRAPH 2024 Conference Proceed-
ings 43.4 (2024) (cit. on p. 107).

[123] R. Miner. “The importance of MathML to mathematics communication”. Notices of the
AMS 52.5 (2005), pp. 532–538 (cit. on p. 32).

[124] D. Moritz, C. Wang, G. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. “Formalizing
visualization design knowledge as constraints: Actionable and extensible models in draco”.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2019) (cit. on p. 23).

[125] L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. “The Lean theorem
prover”. International conf. on automated deduction. Springer, 2015, pp. 378–388 (cit. on
p. 32).

[126] B. A. Myers. “Separating application code from toolkits: Eliminating the Spaghetti of
call-backs”. Proceedings of the 4th Annual ACM Symposium on User Interface Software
and Technology, UIST 1991. New York, New York, USA: ACM Press, 1991, pp. 211–220
(cit. on p. 109).

[127] B. A. Myers, J. F. Pane, and A. Ko. “Natural programming languages and environments”.
Communications of the ACM 47.9 (2004), pp. 47–52 (cit. on pp. 12, 20, 106).

[128] B. A. Myers, A. Lai, T. M. Le, Y. S. Yoon, A. Faulring, and J. Brandt. “Selective undo
support for painting applications”. Proceedings of the 33rd annual ACM conference
on human factors in computing systems. Chi ’15. New York, NY, USA: ACM, 2015,
pp. 4227–4236 (cit. on p. 22).

[129] M. J. Nathan, K. R. Koedinger, M. W. Alibali, et al. “Expert blind spot: When content
knowledge eclipses pedagogical content knowledge”. Proceedings of the third interna-
tional conference on cognitive science. Vol. 644648. 2001 (cit. on p. 98).

200

[130] M. J. Nathan, A. C. Stephens, D. K. Masarik, M. W. Alibali, and K. R. Koedinger.
“Representational fluency in middle school: A classroom study”. Proceedings of the
twenty-fourth annual meeting of the North American chapter of the International Group
for the Psychology of Mathematics Education. Vol. 1. ERIC Clearinghouse for Science,
Mathematics and Environmental Education~⋯, 2002, pp. 462–472 (cit. on p. 71).

[131] W. Nawrocki, E. W. Ayers, and G. Ebner. “An Extensible User Interface for Lean 4”. 14th
International Conference on Interactive Theorem Proving. Vol. 268. Biaystok: Schloss
Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, July 2023 (cit. on
p. 60).

[132] A. Newell. Unified theories of cognition. Harvard University Press, 1994 (cit. on p. 58).
[133] W. Ni, S. Estep, H.-S. Harriman, K. R. Koedinger, and J. Sunshine. “Edgeworth: Efficient

and Scalable Authoring of Visual Thinking Activities”. Proceedings of the Eleventh
ACM Conference on Learning @ Scale. L@S ’24. New York, NY, USA: Association for
Computing Machinery, July 2024, pp. 98–109 (cit. on pp. 71, 87, 89).

[134] C. Olah. Understanding LSTM networks. 2015 (cit. on p. 11).
[135] C. Omar, I. Voysey, R. Chugh, and M. A. Hammer. “Live functional programming with

typed holes”. Proceedings of the ACM on Programming Languages 3.POPL (2019), p. 14
(cit. on p. 24).

[136] S. Oney, B. A. Myers, and J. Brandt. “Euclase: A live development environment with
constraints and FSMs”. 2013 1st International Workshop on Live Programming (LIVE).
May 2013, pp. 15–18 (cit. on p. 25).

[137] Open Learning Initiative. General chemistry 1. 2024 (cit. on pp. 79, 81).
[138] F. G. Paas and J. J. Van Merriënboer. “Variability of Worked Examples and Transfer of Ge-

ometrical Problem-Solving Skills: A Cognitive-Load Approach”. Journal of Educational
Psychology 86.1 (1994), pp. 122–133 (cit. on p. 7).

[139] List of PENROSE Packages on NPM (cit. on p. 59).
[140] L. Pan, C. Yu, Z. He, and Y. Shi. “A Human-Computer Collaborative Editing Tool for

Conceptual Diagrams”. Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. CHI ’23. New York, NY, USA: Association for Computing
Machinery, Apr. 2023, pp. 1–29 (cit. on p. 107).

[141] H. Pashler, P. M. Bain, B. A. Bottge, A. Graesser, K. Koedinger, M. McDaniel, and
J. Metcalfe. Organizing Instruction and Study to Improve Student Learning. Tech. rep.
Washington, DC: NCER, IES„ U.S. Department of Education, 2007 (cit. on p. 7).

[142] R. Patel, S. Sanghavi, D. Gupta, and M. S. Raval. “CheckIt - A low cost mobile OMR
system”. TENCON 2015 - 2015 IEEE region 10 conference. 2015, pp. 1–5 (cit. on p. 9).

[143] C. S. Peirce. Collected papers. eng. Cambridge: Harvard University Press, 1931 (cit. on
p. 6).

[144] M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering: From theory to
implementation. Morgan Kaufmann, 2016 (cit. on pp. 43, 57).

[145] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer Science
& Business Media, 2012 (cit. on p. 51).

201

[146] P. Rahmanzadehgervi, L. Bolton, M. R. Taesiri, and A. T. Nguyen. Vision language models
are blind. July 2024 (cit. on p. 109).

[147] M. A. Rau. “Conceptual learning with multiple graphical representations: Intelligent
tutoring systems support for sense-making and fluency-building processes”. en. PhD
thesis. Carnegie Mellon University, 2013 (cit. on pp. 1, 3, 7).

[148] M. A. Rau. “Conditions for the Effectiveness of Multiple Visual Representations in
Enhancing STEM Learning”. en. Educational Psychology Review 29.4 (Dec. 2017),
pp. 717–761 (cit. on p. 7).

[149] L. Razzaq, J. Patvarczki, S. F. Almeida, M. Vartak, M. Feng, N. T. Heffernan, and K. R.
Koedinger. “The ASSISTment builder: Supporting the life cycle of tutoring system content
creation”. IEEE Transactions on Learning Technologies 2.2 (2009), pp. 157–166 (cit. on
pp. 9, 101).

[150] C. Reas and B. Fry. “Processing: Programming for the media arts”. AI & SOCIETY 20.4
(Sept. 2006), pp. 526–538 (cit. on p. 8).

[151] S. P. Reiss, Q. Xin, and J. Huang. “SEEDE: Simultaneous execution and editing in a
development environment”. Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering. Ase 2018. New York, NY, USA: ACM, 2018, pp. 270–
281 (cit. on p. 24).

[152] C. Richards. “The Fundamental Design Variables of Diagramming”. en. Diagrammatic
Representation and Reasoning. London: Springer London, 2002, pp. 85–102 (cit. on
p. 24).

[153] Y. Riche, N. Henry Riche, K. Hinckley, S. Panabaker, S. Fuelling, and S. Williams. “As
we may ink?: Learning from everyday analog pen use to improve digital ink experiences”.
Proceedings of the 2017 CHI conference on human factors in computing systems. Chi ’17.
New York, NY, USA: ACM, 2017, pp. 3241–3253 (cit. on p. 21).

[154] D. Rohrer and K. Taylor. “The shuffling of mathematics problems improves learning”.
Instructional Science 35.6 (Nov. 2007), pp. 481–498 (cit. on p. 7).

[155] K. H. Rosen. Discrete mathematics & applications. 7th. McGraw-Hill, 1999 (cit. on
p. 79).

[156] K. H. Rosen. Discrete mathematics & applications. McGraw-Hill, 1999 (cit. on p. 83).
[157] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson, M. Brehmer, and

Z. Liu. “Critical reflections on visualization authoring systems”. IEEE Transactions on
Visualization and Computer Graphics 26.1 (Jan. 2020), pp. 461–471 (cit. on p. 8).

[158] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. “Declarative interaction design for
data visualization”. UIST 2014 - Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology. New York, NY, USA: ACM, 2014, pp. 669–678
(cit. on p. 6).

[159] R. Sawhney and K. Crane. geometry-processing.js: A fast and flexible geometry processing
library. 2017 (cit. on p. 52).

[160] H. L. Schnackenberg, H. J. Sullivan, L. F. Leader, and E. E. Jones. “Learner preferences
and achievement under differing amounts of learner practice”. Educational Technology
Research and Development 46.2 (1998), pp. 5–16 (cit. on p. 7).

202

[161] B. Sheil. “Environments for exploratory programming”. Datamation 29.7 (1983), pp. 131–
144 (cit. on p. 22).

[162] S.-J. Shin, O. Lemon, and J. Mumma. “Diagrams”. The Stanford Encyclopedia of Phi-
losophy. Winter 2018. Metaphysics Research Lab, Stanford University, 2018 (cit. on
p. 6).

[163] B. Shneiderman. “Direct manipulation: a step beyond programming languages”. Computer
16.8 (1983), pp. 57–69 (cit. on p. 23).

[164] R. Singh, S. Gulwani, and S. Rajamani. “Automatically Generating Algebra Problems”.
Proceedings of the AAAI Conference on Artificial Intelligence 26.1 (2012), pp. 1620–1628
(cit. on p. 9).

[165] R. R. Stoll. Set Theory and Logic. en. Courier Corporation, May 2012 (cit. on p. 61).
[166] J. Strömberg. “Integrating constraints with a drawing CAD application”. Stockholm

University (2006) (cit. on p. 25).
[167] I. E. Sutherland. “Sketchpad a man-machine graphical communication system”. Simula-

tion 2.5 (1964), R–3 (cit. on pp. 8, 25, 32).
[168] M. Suwa and B. Tversky. “What do architects and students perceive in their design

sketches? A protocol analysis”. Design studies 18.4 (1997), pp. 385–403 (cit. on p. 22).
[169] S. L. Tanimoto. “VIVA: a visual language for image processing”. 1.2 (June 1990), pp. 127–

139 (cit. on pp. 23, 24).
[170] T. Tantau. The TikZ and PGF packages. Manual for version 3.0.0. manual. Dec. 2013

(cit. on p. 8).
[171] W. P. Thurston. “On proof and progress in mathematics”. Bulletin of the American

Mathematical Society 30.2 (Apr. 1994), pp. 161–177 (cit. on p. 2).
[172] C. D. Tippett. “What recent research on diagrams suggests about learning with rather

than learning from visual representations in science”. International Journal of Science
Education 38.5 (Apr. 2016), pp. 725–746 (cit. on p. 6).

[173] L. Torvalds and J. Hamano. “Git: Fast version control system”. URL http://git-scm. com
(2010) (cit. on p. 19).

[174] E. R. Tufte and P. R. Graves-Morris. The visual display of quantitative information. Vol. 2.
Graphics press Cheshire, CT, 1983 (cit. on p. 5).

[175] B. Tversky. “Diagrams”. Information Design. Routledge, 2017 (cit. on p. 5).
[176] B. Tversky. “Visualizing Thought”. Topics in Cognitive Science 3.3 (July 2011), pp. 499–

535 (cit. on p. 5).
[177] A. Van Deursen, P. Klint, and J. Visser. “Domain-specific languages: An annotated

bibliography”. ACM Sigplan Notices 35.6 (2000), pp. 26–36 (cit. on pp. 24, 31).
[178] K. VanLehn. “The Behavior of Tutoring Systems”. International Journal of Artificial

Intelligence in Education 16.3 (Jan. 2006), pp. 227–265 (cit. on p. 9).
[179] B. Victor. Up and Down the Ladder of Abstraction: A systematic approach to interactive

visualization. 2011 (cit. on p. 22).
[180] M. Voelter and V. Pech. “Language modularity with the MPS language workbench”. 2012

34th International Conference on Software Engineering (ICSE). June 2012, pp. 1449–
1450 (cit. on p. 24).

203

[181] K. Wang and Z. Su. “Automatic generation of Raven’s progressive Matrices”. IJCAI
International Joint Conference on Artificial Intelligence. Vol. 2015-Janua. 2015, pp. 903–
909 (cit. on p. 10).

[182] D. Weitekamp, E. Harpstead, and K. R. Koedinger. “An Interaction Design for Machine
Teaching to Develop AI Tutors”. Conference on Human Factors in Computing Systems -
Proceedings (Apr. 2020) (cit. on p. 9).

[183] E. Wiese. “Toward Sense Making with Grounded Feedback”. en. Thesis. July 2018 (cit. on
p. 1).

[184] Wikipedia contributors. Diffie-Hellman key exchange— Wikipedia, The Free Encyclope-
dia. 2019 (cit. on p. 11).

[185] L. Wilkinson. “The Grammar of Graphics”. Handbook of Computational Statistics (2012),
pp. 375–414 (cit. on pp. 5, 23).

[186] E. Willigers, C. Lilley, D. Schulze, B. Brinza, D. Storey, and A. Bellamy-Royds. Scalable
vector graphics (SVG) 2. Candidate Recommendation. W3C, Oct. 2018 (cit. on p. 8).

[187] J. O. Wobbrock and J. A. Kientz. “Research contributions in human-computer interaction”.
interactions 23.3 (Apr. 2016), pp. 38–44 (cit. on p. 4).

[188] Y. Wu, Y. Fan, S. Y. Min, S. Prabhumoye, S. McAleer, Y. Bisk, R. Salakhutdinov, Y. Li,
and T. Mitchell. AgentKit: Structured LLM Reasoning with Dynamic Graphs. July 2024
(cit. on p. 109).

[189] Y. Yang, D. Sanyal, J. Michelson, J. Ainooson, and M. Kunda. “Automatic Item Generation
of Figural Analogy Problems: A Review and Outlook” (Jan. 2022) (cit. on p. 10).

[190] K. Ye, K. Crane, J. Aldrich, and J. Sunshine. “Designing extensible, domain-specific
languages for mathematical diagrams”. Off the Beaten Track. OBT’17. Jan. 2017 (cit. on
p. 11).

[191] K. Ye, W. Ni, M. Krieger, D. Ma’ayan, J. Wise, J. Aldrich, J. Sunshine, and K. Crane.
“Penrose: From Mathematical Notation to Beautiful Diagrams”. ACM Transactions on
Graphics 39.4 (July 2020), 144:144:1–144:144:16 (cit. on pp. 27, 45, 59, 60, 61, 77, 79).

[192] Y. S. Yoon and B. A. Myers. “A longitudinal study of programmers’ backtracking”. 2014
IEEE symposium on visual languages and human-centric computing (VL/HCC). IEEE,
2014, pp. 101–108 (cit. on p. 22).

[193] Y. S. Yoon and B. A. Myers. “Supporting Selective Undo in a Code Editor”. 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. Vol. 1. May
2015, pp. 223–233 (cit. on p. 22).

[194] J. Zhang and D. A. Norman. “Representations in distributed cognitive tasks”. Cognitive
science 18.1 (1994), pp. 87–122 (cit. on p. 6).

204

	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement and Research Questions
	1.3 Thesis Outline

	2 Background and Related Work
	2.1 Diagrams
	2.2 Learning how to use diagrams
	2.2.1 Representational fluency and contrasting cases
	2.2.2 Multiplicity of examples

	2.3 Digital diagramming tools
	2.4 Tools for Problem Generation

	3 Understanding the Diagramming Process
	3.1 Introduction
	3.2 Method
	3.2.1 Participants and Recruitment
	3.2.2 Semi-structured Interviews
	3.2.3 Analysis

	3.3 Results
	3.3.1 Representation finding
	3.3.2 Choosing the right tools
	3.3.3 Reusing elements from earlier diagrams

	3.4 Implications: Natural Diagramming
	3.4.1 Exploration Support
	3.4.2 Representation Salience
	3.4.3 Live Engagement
	3.4.4 Vocabulary Correspondence

	3.5 Summary

	4 Penrose: From Notations to Beautiful Diagrams
	4.1 Introduction
	4.2 System Design
	4.2.1 Language-Based Specification
	4.2.2 Optimization-Based Synthesis
	4.2.3 Plugins

	4.3 Language Framework
	4.3.1 The Domain Schema
	4.3.2 The Substance Language
	4.3.3 The Style language

	4.4 Layout engine
	4.4.1 Compiler
	4.4.2 Solver
	4.4.3 Plugins
	4.4.4 Rendering
	4.4.5 Development Environment
	4.4.6 Implementation

	4.5 Examples and Evaluation
	4.5.1 Sets
	4.5.2 Functions
	4.5.3 Geometry
	4.5.4 Linear Algebra
	4.5.5 Meshes
	4.5.6 Ray Tracing
	4.5.7 Large-Scale Diagram Generation
	4.5.8 Performance Evaluation

	4.6 Open-Source Development
	4.6.1 Evolution of the implementation
	4.6.2 Development infrastructure
	4.6.3 Open-source community

	4.7 Limitations, Recent Developments, and Future Work
	4.7.1 Language expressiveness
	4.7.2 Layout Optimization
	4.7.3 Extensibility
	4.7.4 Accessibility

	4.8 Summary

	5 Edgeworth: Diagrammatic Problem Authoring at Scale
	5.1 Introduction
	5.2 Formative interview
	5.3 System Design of Edgeworth
	5.3.1 Author Workflow
	5.3.2 Diagram Notation and Layout
	5.3.3 Program Mutation

	5.4 Translation Problem Dataset
	5.4.1 Summary Statistics
	5.4.2 Euclidean Geometry
	5.4.3 General Chemistry: Lewis Structures
	5.4.4 Discrete Math: Graphs

	5.5 Summary

	6 Evaluating Edgeworth
	6.1 Reliability Evaluation (RQ3.1)
	6.1.1 Methods
	6.1.2 Results

	6.2 Experimental Evaluation of Authoring Efficiency (RQ3.2)
	6.2.1 Study Design
	6.2.2 Results
	6.2.3 Discussion

	6.3 Expert Walkthrough Demonstration and Feedback (RQ3.3)
	6.3.1 Participants and Procedure
	6.3.2 Ecological Validity of Generated Problems
	6.3.3 Expert Feedback

	6.4 Limitations of the Studies
	6.4.1 Ecological Validity
	6.4.2 Tool
	6.4.3 Authoring Speed vs. Problem Quality

	6.5 Limitations of the Edgeworth System
	6.5.1 Numerical and textual variations
	6.5.2 Usability of UI components
	6.5.3 New domains of instruction
	6.5.4 Mismatches with the author's intents

	6.6 Summary

	7 Conclusion and Future Work
	7.1 Summary of contributions
	7.2 Future work
	7.2.1 Natural diagramming
	7.2.2 Composable visual representations
	7.2.3 Knowledge-infused problem variation
	7.2.4 Interactive diagrams

	7.3 Concluding remarks

	A Diagrammer Semi-Structured Interview Protocol
	A.1 Introduction and Kick-off
	A.2 Past Diagramming Experience
	A.3 Diagramming Practice and Tools
	A.4 Reuse Questions
	A.5 Audience Reception

	B Diagrammer Interview Codebook
	C Walkthrough of a Penrose Trio for Euler Diagram
	C.1 Domain program for sets
	C.2 Declaring Sets and Subset Relations in Substance
	C.3 Styling Euler Diagrams using Style
	C.4 Layout Optimization and Rendering

	D Three Style Programs for the Penrose Set Theory Domain
	D.1 Euler
	D.2 Euler 3D
	D.3 Tree

	E Penrose Registry Benchmark
	E.1 Data

	F Penrose Registry Diagrams
	G Edgeworth Formative Interview Protocol
	G.1 Introduction
	G.2 Needs and Requirements
	G.3 Tooling
	G.4 Authoring Process
	G.5 Meta

	H Edgeworth Translation Problem Dataset
	I Coding Results from the Edgeworth Reliability Evaluation
	J Edgeworth User Study Instructions
	K Edgeworth Expert Walkthrough Demonstration Protocol
	Bibliography

